

WP3: IMPROVED USE OF IN SITU 14CO2 AND APO OBSERVATIONS TO SEPARATE THE IMPACT OF FOSSIL FUEL EMISSIONS FROM OBSERVED CO2 VARIABILITY

Kick-off Meeting

Ingrid Luijkx (WU), Gregoire Broquet (LSCE) and the WP3 team (ECMWF, AGH, LSCE, TNO, UNIVBRIS, RUG, UHEI, ULUND, UT3, WU, ETHZ)

23/01/2023

- CO₂ surface sites: to complement satellite data or benchmark the inversions based on satellite data for the CO2MVS service
- Radiocarbon (ffCO₂ is free from ¹⁴C) and Atmospheric Potential Oxygen (APO short scale variations mainly from ff combustion) to better separate anthropogenic and natural CO₂ signals
 - → specific sample and measurement frameworks, additional components in the modelling & inversion systems
- \rightarrow need to assess the use of such data for CO2MVS
- Challenges: sparse and heterogeneous coverage over past decades, costs, network compatibility

Assessment of the potential of ¹⁴CO₂ and APO networks

• positive insights from experiments with pseudo data (incl. CHE WP4) and from regional analysis

Studying the complementarity between XCO₂ and ¹⁴CO₂ data in CHE: uncertainty reduction (from ~20% prior uncert.) for the regional budgets of FF CO₂ emissions on a day of overpass by CO2M when assimilating ¹⁴CO₂ and XCO₂ data; Potier et al., 2022, AMT, with results from CHE / CoCO2

Inversion of California's ffCO₂ emissions in 2014-2015 using nine ¹⁴C-CO₂ sites with samples every 2-3 days in May 2014, Oct-Nov 2014 and Jan-Feb 2015; Graven et al., 2018, ERL

FF CO₂, TgC yr⁻¹

Source	Reported	Adjusted	Prior	Posterior
CDIAC	1,471	1,513		
EDGAR 4.2 FT2010	1,497	1,522		
EDGAR 4.3	1,505	1,545		
US EPA	1,555 ⁺⁶²	1,581 ⁺⁶²		
Vulcan 3.0	1,638	1,676		
Inverse estimate (mean)			1,528	1,653 \pm 30
Inverse estimate (Miller/CT prior)			1,543	1,627 ± 30
Inverse estimate (seasonal FFDAS prior)			1,485	1,656 ± 30
Inverse estimate (ODIAC prior)			1,555	1,675 ± 30

US ffCO₂ emission estimates for 2010 including inversions using ~1000 ¹⁴C-CO₂ samples from 16 sites and CO₂ continuous measurents; Basu et al., 2020, PNAS

Assessment of the potential of ¹⁴CO₂ and APO networks

• positive insights from experiments with pseudo data (incl. CHE WP4) and from regional analysis

Quantifying of ffCO₂ reduction in UK during COVID-19 lockdowns using continuous APO measurements at WAO; Pickers et al., 2022, Science Advances with results reported in CHE

Assessment of the potential of ¹⁴CO₂ and APO networks

- positive insights from experiments with pseudo data (incl. CHE WP4) and from regional analysis
- but need for a new detailed assessment using real data to weight the contribution to the MVS with
 respect to the requirements in terms of global to regional observation and modelling
 - → background stations with coarse sample and global scale atmospheric inversion approaches to constrain emissions at large-scales and the background fields
- \rightarrow dense continental networks with ¹⁴CO₂ / APO high frequency sampling and continuous APO sites and mesoscale atmospheric inversion approaches to constrain national to local emissions

Stations for which obs should be available for use in CORSO from ICOS and collaborating laboratories

14CO2 & APO

¹⁴CO₂ integrated

GOALS

- Assess the relevance of including ¹⁴CO₂ and APO data assimilation in the CO2MVS system to monitor ff emissions (attribution, verification) → to benchmark or feed the main analysis
- Quantify the regional and large-scale constraints on the ff emission estimates
- Evaluate the added value of high-temporal resolution ¹⁴CO₂ and APO observations, and of the extension of current networks
- \rightarrow developing global and European scale ¹⁴CO₂ and APO inverse modelling frameworks, with dedicated flux products and new/improved inversion techniques (incl. legacy from CHE)
- → demonstrations with 20-year analysis and projections for the coming decade at global scale and with intensive measurements and inversion experiments during a focus year in Europe
- Prepare the transfer of capacity to the CO2MVS
- Provide recommendations to CAMS, ICOS and WMO regarding the measurement infrastructure

STRUCTURE AND CONNECTION TO OTHER WPs

- Relatively independent from other WPs within CORSO
- Legacy from past projects including CHE, complementarity with new projects
- 4 tasks covering three aspects, observations, bottom-up modelling of fluxes and inverse modeling

TEAM Work Package 3

- ECMWF: Nicolas Bousserez + postdoc
- AGH:

٠

٠

٠

- LSCE: Gregoire Broquet, Philippe Ciais, Frederic Chevallier
 Philippe Peylin, Antoine Brechet, Hannah Allen
 - TNO: Hugo Denier van der Gon

Jaroslaw Necki

- UNIVBRIS: Matt Rigby, Hannah Chawner, Angelina Wenger
 - RUG: Harro Meijer + postdoc
- UHEI/ICOS: Samuel Hammer, Ingeborg Levin
- ULUND: Marko Scholze, Carlos Gomez
- UT3: Claire Granier, Thierno Doumbia, Antonin Soulie
 - WU: Ingrid Luijkx, Wouter Peters, Joram Hooghiem
- ETHZ: Lukas Wacker, Philip Gautschi

tions

WUR

• ECMWF:	Nicolas Bousserez + postdoc	(modelling)			
• AGH:	Jaroslaw Necki	(measurements)			
• LSCE:	Gregoire Broquet, Philippe Ciais, Frederic Chevallier	(modelling)			
	Philippe Peylin, Antoine Brechet, Hannah Allen				
• TNO:	Hugo Denier van der Gon	(modelling, flux databases)			
• UNIVBRIS:	Matt Rigby, Hannah Chawner, Angelina Wenger	(modelling & measurements)			
• RUG:	Harro Meijer + postdoc	(meas., APO data comp.)			
• UHEI/ICOS:	Samuel Hammer, Ingeborg Levin	(meas., ¹⁴ CO ₂ data comp.)			
• ULUND:	Marko Scholze, Carlos Gomez	(modelling)			
• UT3:	Claire Granier, Thierno Doumbia, Antonin Soulie (modelling, flux databases)				
• WU:	Ingrid Luijkx, Wouter Peters, Joram Hooghiem	(modelling & measurements)			
• ETHZ:	Lukas Wacker, Philip Gautschi	(measurements)			

- Task 3.1 ¹⁴CO₂ and APO data collection and intensified use of existing infrastructure (lead: UHEI & RUG)
- Task 3.1.a Global APO (RUG) and ¹⁴CO₂ (UHEI) database
- Task 3.1.b Intensive ¹⁴CO₂ and APO observation year in Europe (UHEI, RUG, UNIVBRIS, AGH, ETHZ)
- \star Extension of the ICOS CRL ¹⁴CO₂ sample processing capacity (ETHZ, UHEI)
- ★ New stations: continuous APO Cabauw (RUG, WU), ICOS flasks at: Bialystok (AGH), Heathfield (UNIVBRIS)
- **\star** Additional ¹⁴CO₂ measurements from new and archived samples by Scripps
- **\star** Integrated ¹⁴CO₂² samples for MHD, IZO and ALT (UHEI)

- Task 3.2 APO and ¹⁴CO₂ flux databases (lead: TNO & ULUND)
- Task 3.2.a Collection of ¹⁴CO₂ flux products

Terrestrial and oceanic ¹⁴CO₂ disequilibrium fluxes (LPJ-GUESS & C-TESSEL/ECLAND, <u>ULUND</u>, WP4), cosmogenic production (Wang, 2016 by <u>LSCE</u>), emissions from nuclear reactors and reprocessing plants (RADD with updates by LSCE)

• Task 3.2.b Global and regional APO inventories

APO fluxes for fossil and biofuels, based on TNO_GHGco and GRACED (TNO, LSCE)

• Task 3.2.c Ocean APO fluxes

ECCO2 and NEMO O₂, N₂ and CO₂ fluxes (UNIVBRIS)

• Task 3.2.d Future emission scenarios

Based on SSPs from IPCC AR6 for the coming decade for CO₂, ¹⁴CO₂ and APO (UT3)

• Task 3.3 Global scale modelling and inversions (lead WU & LSCE)

Assessing large-scale constraints on fossil fuel CO₂ emissions from ¹⁴CO₂ and APO with focus on 2004-2024 for North America and Europe, where inventories are relatively robust. Additionally, we will run future scenarios 2020-2030 to test against changing emission landscape.

Modelling systems:

- CTE-TM5 (WUR)
- CIF-LMDZ (LSCE)
- TM5-4DVAR ¹⁴CO₂ (ULUND)
- Working towards OpenIFS (WUR/ECMWF)

- Task 3.4 Regional scale modelling and inversions (lead ULUND & UNIVBRIS)
- Task 3.4.a Regional European inversions

Focussing on the added value of the observations collected in the intensive year 2024, from the ICOS flask samples at 14 stations and the continuous APO observations

Modelling systems:

- CTE-TM5 (WUR)
- CIF-LMDZ (LSCE)
- NAME- HBMCMC (UNIVBRIS)
- LUMIA (ULUND)

• Task 3.4.b Site-level attribution

CTE and NAME will assess specifically the added value of continuous APO observations compared to flask APO and ¹⁴CO₂ observations, focussing on UK-NL, plus development of a metric to test the skill of the systems to detect fossil fuel dominated plumes or by specific sectors

DELIVERABLES AND TIMELINE

		2023	2024		2025	
T3.1: ¹⁴ CO ₂ intensified us	and APO data collection and se of existing infrastructure	D1-2	Intensive obs year	D3		
T3.2: APO an	: APO and ¹⁴ CO ₂ flux database M1		D	4		
T3.3 Global s	T3.3 Global scale modelling and inversions M13					D5
T3.4 Regiona	T3.4 Regional scale modelling and inversions M14				M15	D6
D3.1	Database of existing ¹⁴ CO ₂ measurements			M9	Lead UHEI	
D3.2	Database of existing APO measurements			M9	Lead RUG	
D3.3	Final APO and ¹⁴ CO ₂ measurement datasets from the 1-year intensive observations in Western Europe				M28	Lead UHEI
M12	First version of the APO and ¹⁴ CO ₂ flux databases with an exhaustive coverage of all types of fluxes including intermediate products				M10	
D3.4	Final and complete version of the APO and ¹⁴ CO ₂ flux databases				M24	Lead TNO
M13	First 20-year global inversions assimilating APO and ¹⁴ CO ₂				M20	
D3.5	Estimates of the annual fossil fuel CO ₂ emissions at the continental to national scales over a decade and recommendations for the implementation of global scale APO and ¹⁴ CO ₂ data assimilation in the CO2MVS				M36	Lead WU
M14	Regional inversion systems set-up for intensive observation year			M26		
M15	Development of metric for the assessment of the added value of continuous APO					
D3.6	Analysis of the FFCO2 emissions at national scale in Western Europe in 2024 and recommendations for the implementation of regional scale APO and ¹⁴ CO ₂ data assimilation in the CO2MVS					Lead UNIVBRIS

Focus point first year

- Extending ¹⁴CO₂ measurement capabilities
- Continuous APO measurements to be set up at Cabauw
- ¹⁴CO₂ and APO measurement databases
- Preparation flux databases
- Preparations modelling setups

THANK YOU

Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or the Commission. Neither the European Union nor the granting authority can be held responsible for them.

The CORSO project (grant agreement No 101082194) is funded by the European Union.