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1 Executive Summary

This work was carried out within Work Package 2 (WP2), which aims to improve the estimation
of anthropogenic emissions by leveraging co-emitted species in support of the future CO-
Monitoring and Verification Support (CO2MVS) system. Nitrogen dioxide (NO2) and carbon
monoxide (CO) observations are available with higher spatial and temporal coverage than
CO; observations from instruments like TROPOMI on Sentinel-5P. NO; is also observed by
satellites with higher precision than carbon dioxide (CO.), making it a valuable tracer for
anthropogenic emissions.

This report supports WP2 objectives by detailing the methodology and results of using
TROPOMI satellite observations of NO, and CO columns to quantify emissions from urban
areas, power generation facilities, and iron and steel plants. Emission plumes of NO, and CO
are identified in individual satellite overpasses using plume detection algorithms.
Subsequently, NOx and CO emissions are estimated through data-driven mass balance
approaches and analytical inversion methods.

The report is accompanied by several NetCDF files containing 2021 time series of estimated
NOy and CO emissions for selected megacities, power plants, and iron and steel production
sites across Africa and Europe.
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2 Introduction

2.1 Background

To enable the European Union (EU) to move towards a low-carbon economy and implement
its commitments under the Paris Agreement, a binding target was set to cut emissions in the
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further
consolidated with the release of the Commission's European Green Deal on the 11th of
December 2019, setting the targets for the European environment, economy, and society to
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and
societal transformations that are aiming at combining prosperity and sustainability. To support
EU countries in achieving the targets, the EU and European Commission (EC) recognised the
need for an objective way to monitor anthropogenic CO; emissions and their evolution over
time.

Such a monitoring capacity will deliver consistent and reliable information to support informed
policy- and decision-making processes, both at national and European level. To maintain
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO. emissions Monitoring and Verification Support (MVS)
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.

The CORSO research and innovation project will build on and complement the work of
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2
service) projects, both led by ECMWF. These projects have already started the ramping-up
of the CO2MVS prototype systems, so it can be implemented within the Copernicus
Atmosphere Monitoring Service (CAMS) with the aim to be operational by 2026. The CORSO
project will further support establishing the new CO2MVS addressing specific research &
development questions.

The main objectives of CORSO are to deliver further research activities and outcomes with a
focus on the use of supplementary observations, i.e., of co-emitted species as well as the use
of auxiliary observations to better separate fossil fuel emissions from the other sources of
atmospheric CO,. CORSO will deliver improved estimates of emission factors/ratios and their
uncertainties as well as the capabilities at global and local scale to optimally use observations
of co-emitted species to better estimate anthropogenic CO, emissions. CORSO will also
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value
of high-temporal resolution CO, and APO observations as tracers for anthropogenic
emissions in both global and regional scale inversions and develop coupled land-atmosphere
data assimilation in the global CO2MVS system constraining carbon cycle variables with
satellite observations of soil moisture, LAI, SIF, and Biomass. Finally, CORSO will provide
specific recommendations for the topics above for the operational implementation of the
CO2MVS within the Copernicus programme.

2.2 Scope of WP-2

The work presented in this report is part of WP2 of CORSO, which deals with “Use of co-
emitted species (correlations, improved emission ratios, uncertainties) in data assimilation
systems". The aim of WP2 is to enhance the use of observations of co-emitted species (NOo,
CO) to better estimate anthropogenic CO, emissions in the future CO2MVS capacity. This is
based on the recognition that anthropogenic CO, emissions cannot completely be constrained
with CO. concentration observations alone, and the detectability of the anthropogenic signal
of co-emitted species is often much better than that of CO,. For the emission estimation
development at local scale, this WP focuses on the development of methods to increase the
accuracy of annual CO. emission estimates of hot spots, industrial and urban areas by
integrating satellite observations of co-emitted species (NO2 and CO) in data assimilation
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systems. Since CO: satellite observations are temporally sparse (even with the future CO2M
constellation), temporal sampling biases are a significant source of uncertainty in annual CO-
emission estimates of hot spots. Co-emitted species such as CO and NO: are and will be
available at sub-diurnal temporal coverage from current and future LEO and GEO satellites.
They can therefore be used to improve the constraint on the temporal variability of CO;
emissions and hence for reducing the uncertainty in annual estimates. The local and regional
studies will focus on three regions: Europe, Africa, and Southeast Asia.

2.2.1 Objectives of this deliverable

The objectives of this deliverable are to provide estimates of CO and NOx emissions of hot
spots for Africa, Europe and Southeast Asia using Sentinel-5P/TROPOMI NO, and CO
observations and Geostationary Environment Monitoring Spectrometer (GEMS) NO:
observations. Since GEMS currently does not provide NO. observations for 2021, the current
version of the deliverable only uses TROPOMI observations. The dataset will be used in WP1
(Task 1.3) for validating the bottom-up inventories.

The title of this deliverable is “Time series of NOx and CO emissions of hot spots in Africa,
Europe and SE Asia in reference year”. The deliverable contains this report, which describes
the methodology and several dataset files, which is given separately as a zip file, containing
the time series of NOx and CO emissions for different hot spots.

2.2.2 Work performed in this deliverable
This deliverable was accomplished through a series of activities detailed in Section 3:

o Gathering of NO2 and CO observations from the TROPOMI instrument.

¢ Gathering of wind fields from the ERA-5.

o Development and improvement of plume detection and quantification methods for
determining CO and NOy emissions of hot spots.

e Application of the methods to selected megacites, power plants and iron/steel plants
to generate a time series of CO and NOy emissions for 2021.

¢ Compiling the files containing time series of emissions.

2.2.3 Deviations and counter measures

Access to GEMS NO; data has been delayed and thus only TROPOMI NO, data were used
in this version.

2.3 Project partners

Partners

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER ECMWF
FORECASTS

AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA AGH
STASZICA W KRAKOWIE

BARCELONA SUPERCOMPUTING CENTER - CENTRO BSC

NACIONAL DE SUPERCOMPUTACION
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES | CEA

ALTERNATIVES

KAMINSKI THOMAS HERBERT iLab
METEO-FRANCE MF
NEDERLANDSE ORGANISATIE VOOR TOEGEPAST TNO
NATUURWETENSCHAPPELIJK ONDERZOEK TNO
RIJKSUNIVERSITEIT GRONINGEN RUG
RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG UHEI
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3 Data and methods

This deliverable describes the input data and methods used for estimating time series of CO
and NOy emissions from hot spots using Sentinel-5P/TROPOMI CO and NO- observations for
year 2021. The dataset includes hot spots in Africa, Europe and Southeast Asia. The data
product will be used in Task 1.3 for evaluating the bottom-up emission estimates prepared for
the same year.

3.1 Plume detection using machine-learning algorithm

3.1.1 Image segmentation

This work builds on a previous NO2 plume detection model (Finch et al., 2022), which used a
convolutional neural network (CNN) to classify images of TROPOMI tropospheric NO> column
data as to whether or not they contained an emission plume. This model had limitations as
there was no information on the location or size of the plume, or whether the image contained
multiple plumes. The model was only successful if a plume was contained within a pre-defined
image size; therefore, any plumes larger than the image size, or crossing between two or more
images introduced inaccuracies in the detection. To address these issues, a segmentation
model was developed. This generates a mask indicating the probable location of the plume
and includes a method for merging plumes that span multiple images

A U-Net style model is used, consisting of a series of down-sampling blocks, each containing
a double convolutional layer, a max pooling layer and a dropout layer set at 20%. This is
followed by a double convolutional layer, which determines the important features of the input
image. Subsequently, up-sampling blocks reconstruct the image to its original dimensions,
producing a mask of the predicted plume. A schematic of the model is shown in Figure 1.

Input Image

Downsample block Predicted Mask

Double convolutional layer

Max Pool layer

Dropout layer (20%)

Gaussian Noise Layer

Downsample Block Upsample Block

Upsample block

Double transpose convolutional
layer

Downsample Block Upsample Block

Downsample Block Upsample Block

Concatenate Layer

Dropout layer (20%)

Downsample Block Upsample Block

Double convolutional layer

Double convolutional
layer

Figure 1: Schematic of the U-Net architecture used to develop the plume detection models. An input
image (top left) goes through four downsampling blocks (green) made from convolutional, max
pooling and dropout layers. The image is then put through a double convolutional layer (orange) to
detect patterns, and a mask (top right) is built by passing the image through four upsample blocks
(blue) consisting of a transponse convolutional, concatenation, dropout and a convolutional layer.

The model input is a normalised 32 x 32-pixel section of the TROPOMI swath with an output
of the same size. To manage plumes that are larger than the image or straddling multiple
images, each TROPOMI swath is split into overlapping images created from a rolling window
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of four pixels in both the along-swath and across-swath directions. This process generates
approximately 100,000 images per swath, which are fed into the model. Each image is then
passed through the plume detection model and the swath is rebuilt from the predicted output
based on the median of the mask prediction. The final product is an array the same size as
the original swath containing the predicted masks. Finally, OpenCV is used to detect each
individual plume mask in the swath regardless of the size or shape.

To train the plume detection model, plume masks were drawn for 702 images, where
approximately 30% of these had multiple plumes within them. The dataset was augmented by
flipping and rotating the images creating a final training dataset of 4,914 images. This was
then randomly split into 80% training and 20% testing data. The plumes chosen to train the
model were taken from random swaths from anytime during 2019 from across the globe. This
reduces the chance of selecting neighbouring images and therefore reduces the chances of
auto-correlation between images in space or time.

To get an indication of whether the detected plume is likely to be from a biomass burning
source, the plumes are compared to the locations of fire detections in VIIRS and MODIS data.
A plume is marked with a biomass burning flag if there are fire detections from either VIIRS or
MODIS within the plume boundary on the same date as the plume.

3.1.2 Emission quantification

To estimate an emission Q rate associated with a plume we use the integrated mass
enhancement (IME) method following equation:

_ AM XU
L
where AM is the integrated mass enhancement of the plume compared to the background (in
kg), U is the wind speed (in m s™) and L is the length of the plume (in metres). To calculate
the mass enhancement of the plume in relation to the background, first the boundary of the

plume is determined by finding the outline of the predicted plume mask. Figure 2 shows a
typical plume found in TROPOMI data with associated plume boundary.

B 107.5
105.0
102.5
100.0
97.5
95.0
925

Figure 2: Normalized plume from the TROPOMI data, with predicted mask boundary (red), fitted
ellipse (light blue), and plume primary axis (white) on the left, and pixel area for the same image with
the plume boundary (white) shown for context.

10

Normalised NO; Column
Pixel Area (km?)

0.0

Using the pixel area, the mass of gas within each pixel is calculated from the TROPOMI
column observations (molecules per m?). The mass of the plume within the boundary can be
calculated, and the background mass is taken as the median mass of all pixels within the
image but outside the plume boundary. The mass enhancement is the difference between
these two values. The length of the plume is determined by fitting an ellipse to the plume using
the OpenCV package in python.

The wind speed is taken as the median wind speed within the plume boundary. The wind
speed used is the ECMWF 10 m U and V wind vectors. The angle between wind speed and
the direction of the plume is calculated and can be used for filtering of plumes, since, if the
direction of a plume does not align with the wind direction, then it may not be a genuine plume.
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This filtering was not applied for the results shown here as more refining and quality checking
is needed to be confident in the results.

3.2 CO emissions of hot spots from TROPOMI CO observations

Two types of CO hotspots have been investigated. Emissions of urban areas are estimated
through the cross-section flux (CSF) method. Iron & steel plants, which tend to have lower
emission rates than the urban areas, have their emissions quantified using an analytical
inversion.

3.2.1 Cross-sectional flux analysis for African mega-cities

Here we give a short overview of the CSF method as applied to mega-cities in Africa, a detailed
description of the algorithm is given in Leguijt et al. (2023). Using three years of quality-filtered
operational TROPOMI CO data (Landgraf et al., 2018), the emission rates of 29 mega-cities
in Africa are estimated. Each overpass, pixels with enhanced CO concentrations downwind of
the city are selected as part of the plume. Despite using multiple wind products (10 meter
altitude wind fields from NASA/GMAO GEOS-FP reanalysis data, planetary boundary layer
averaged GEOS-FP reanalysis data and the 10 meter altitude wind fields from the ECMWF
ERAS product — (Molod et al., 2012; Hersbach et al., 2020) wind field information is a major
contributor of uncertainty to the final emission estimate. Therefore, the wind direction is
redetermined based on the plume direction, under the assumption that the enhanced
concentrations move with the wind.

Following the determination of plume pixels, a 2D spline is fit through the plume, perpendicular
to which cross-sections are drawn. In the absence of a clear plume, a rectangular box is used
to draw down-wind cross-sections. Integration of enhancements along the cross-sections and
multiplication with the local wind-speed yields daily emission estimates. Enhancements are
calculated by subtracting the mean concentration in an up-wind box. The choice for an upwind
background estimation allows application to a large number of sources, despite large variation
in observed plume shapes, plume widths and plume sizes.

=~ =~ T T
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Figure 3: Example of the CSF method applied to estimate CO emissions from Cairo on two individual
days from Leguijt et al. (2023): (a) TROPOMI CO image on 7 April 2019 The arrows show 10-meter

altitude winds from the GEOS-FP reanalysis data, with wind speed defined by length as well as gray
shading . (b) Fitting a 2D spline through enhanced pixels, the shape of the plume is determined. The
spline, and perpendicular cross-sections are shown in blue. The background is determined using the
region indicated with the black box. (c) CO concentrations over Cairo measured by TROPOMI on the
27 March 2020. Due to the absence of a clearly observable plume, a spline fit is not possible, and a

rectangular box is used instead.
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The final CSF algorithm was tested on plumes simulated with the Weather Research and
Forecasting (WRF) model as explained in Leguijt et al. (2023).

3.2.2 Analytical inversion over Europe's iron & steel industry

Integrated iron & steel plants, which are plants covering the entire conversion from iron ore to
steel, are the largest CO sources in Europe. However, although few plants report emissions
above 100 Gg per year, the majority of the plants has emission rates below what can be
quantified using the CSF as implemented in Section 3.2.1. To accurately quantify the emission
rates of the individual plants, an analytical inversion was used, as described in (Leguijt et al.,
2025). Here we will give a short summary of the implemented method.

Members of the European Union are required to report facility-level emission rates to the
European Pollutant Release and Transfer Register (E-PRTR, 2023), this framework was used
as prior emission estimates. Using WRF as forward model, 3D concentration fields were
simulated for the 21 largest iron & steel plants of Europe. The prior emissions were
supplemented with the TNO GHGco inventory version 4 (Kuenen et al., 2022) for the
anthropogenic emissions and boundary conditions from the air pollutant forecast product of
the Copernicus Atmosphere Monitoring Service (CAMS). The resulting 3D fields are converted
into total columns using the TROPOMI averaging kernel to allow proper comparison to the
columns measured by TROPOMI.

Optimizing the cost function J(x), given by

J(x) = (x = x2) TS (x = x4) + ¥y — Kx)TS5 (v — Kx).

Here, x, represents the prior emissions, S, the prior error covariance matrix, y the
regularization parameter, y the observed concentrations, K the Jacobian and S, the
observational error covariance matrix. The two terms comprising J(x) represent departure
from the prior and difference between simulation and observation.

As y — Kx, is evaluated per pixel, spatial mismatches between simulation and observation will
result in underestimation of the emission rate. This effect was remedied by aggregating the
observations. In addition, an ensemble of plumes was simulated by running the WRF model
with different boundary layer schemes. The optimal simulation was determined on a daily
basis.

To verify the inversion emission estimates with prior-independent methods, a CSF, as
discussed in Section 3.2.1, was applied to the 7 largest plants, which all report emission rates
above the 100 Gg threshold. In addition, the simulations were extended to the year 2020 for
4 plants. Differences in emissions between 2019 and 2020 for these plants were compared to
trends in oversampled wind-rotated data as in Clarisse et al. (2019) .

3.3 NOx emissions of hot spots from TROPOMI NO:2 observations

NOx emissions of hot spots are estimated using the divergence (DIV) method and the cross-
sectional flux (CSF) method implemented in the Python library for data-driven emission
quantification (ddeq; Kuhimann et al., 2024). ddeq is an open-source library that was originally
developed for the ESA SMARTCARB project for estimating CO2 emissions from synthetic
CO2M data (Kuhlmann et al., 2019; Kuhlmann et al., 2021). In the CoCO2 project, the library
was extended with additional methods and used for benchmarking different methods for
emission quantification of hot spots (Hakkarainen et al., 2024; Santaren et al., 2025).

3.3.1 Input data

The Sentinel-5P/TROPOMI NO- product (Version 3.6.2) for 2021 was downloaded from the
Copernicus Dataspace (https://dataspace.copernicus.eu/). For wind data, the global ERA-5
reanalysis was obtained on pressure levels (Hersbach et al., 2020). The effective wind speed
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for each source was computed using the standard emission profile for power plants (GNFR-A
profile, Brunner et al. (2019)).

3.3.2 Divergence method

Emission estimates using the divergence method (Beirle et al., 2019; Koene et al., 2024) were
obtained by first computing a global flux map F at a common resolution of 0.03 degrees (F =
V- (l_i VCD) + VCTD, where U is the GNFR-A weighed wind, VCD is the tropospheric NO; column,

and t was set to 4 hours representing the expected lifetime; F is the yearly-averaged version
of this dataset). The divergence operation was computed on the native TROPOMI grid before
conservatively remapping the result onto a common grid.

Air mass factors (AMF) are used to convert slant column densities (SCD) obtained from the
spectral fitting to vertical column densities (VCD):

vep 2 SED L SVCD; - AMF,
“amr " ~ T VD,

where AMF, are the 1D-layer AMFs and VCD, are the layer NO, VCDs taken from low-
resolution global TM5 simulations. Following the TROPOMI user manual, we recalculated the
VCD using an updated expected profile matched with the GNFR-A profile, allowing us to
compute
2i(x;)
VCDpew = M#VCDTROPOMI'
M_TZi(ATxi)

where x; is the new profile defined on the same pressure grid as the averaging kernel (AK)
Ar, M is the total air mass factor and My is the tropospheric air mass factor, and VCDropoms

is the TROPOMI tropospheric NO, VCD. The ratio Zi(xl-)/MﬁZi(ATxi) is referred to as the
T

AMF correction factor, which is used to correct the estimated emissions at a source (Beirle et
al., 2023)

After computing the flux map F we estimated emissions for individual sources by integrating
the mass within geodesic circles centred on each source. The circle radii ranged from 1 to 60
km in 1 km increments. For each radius, the integrated NO, mass is multiplied with an
estimate of the NO»-to-NOy ratio of 1.65 + 0.5 X VCD/VCD,,,, (i.e., the conversion factor
increases when there is a lot of NO), which was chosen to provide reasonable factors for
power plants where conversion factors are available from MicroHH simulations (Belchatow,
Janschwalde and Matimba/Medupi) (Meier et al., 2024; Krol et al., 2024). Next, the local 5x5
mean of the AMF correction factor is applied to scale the emissions. An example of this
procedure is seen in Figure 4. To determine the optimal integration radius (i.e., the point where
additional area no longer meaningfully corresponds to the selected source), we analysed the
shape of the cumulative curve. The selected radius was the smallest radius at which (A) the
first derivative of the cumulative curve became negative (i.e., the curve peaked), or (B) the
second derivative crossed from negative to positive (i.e., the curve began to bend upward
again, indicating another source was integrated too). This curvature-based method proved
effective in isolating the emissions from a single source while avoiding contributions from
nearby sources.
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Source Analysis: New Madrid Power Plant
(Lon: -89.56, Lat: 36.51, AMF correction: x1.61, NO2—-NOx: x1.71)

METHOD1
Estimate: 17.6+5.9 kt/yr METHOD1 Field (Zoom +100 km) 1e-9

i " 06
3705 T NOxwithin 27 km: 14.5 ktfa . < - .

37.00 1

00
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Figure 4: Application of the divergence method to estimate NOx emissions from the New Madrid Power
Plant, USA. Left: Cumulative integration of NO2 mass as a function of increasing radius from the source.
Right. Computed flux map with selected integration radius shown by the circle. The total estimated
emissions from all bottom-up sources (shown as a blue scatter plot) within the selected radius are also
indicated. See main text for details.

Finally, after estimating annual emissions, the same approach was applied on a monthly scale
— by recomputing F on a monthly scale, but while re-using the AMF correction factor and
selected integration radius from the annual data. Only the NO2-to-NOy conversion factor varies
for one month of data at a time.

3.3.2.1 Uncertainty

The uncertainty of the estimates is computed using the principle of quadratic error propagation
(also known as root-sum-squares error propagation). It is calculated using the heuristic
formula for AQ,, which we define as an estimate of the '1¢' uncertainty

2

365\ 2 Jﬁz 7
AQiys = 0Q X [0.1(1 - A)]? + (0.1 T) + 0.1T + 0.22

where Q is the emission estimate (i.e., the uncertainty is proportional to the size of the
estimate), A is the air mass factor correction (i.e., this is a small error term scoring the fact that
we modified our data with a number that has its own uncertainty), d is the number of valid
overpasses for which the quality factor was 0.75 or larger (i.e., if we have daily good quality
overpasses, we would have d = 365 and the error term would correspondingly be small; if we

have fewer overpasses the error term increases proportionally), ,/Uz + 72 is the yearly mean
effective wind speed in meters per second (i.e., if there is a net yearly wind in a particular
direction, the divergence map exhibits certain artifacts as we have observed in the data). The
final term adds a final fixed expected error. Thus, in the ideal case where the AMF correction
is not large (A = 1.7), there is a lot of good data (d = 365), and we have no net yearly wind in
a particular direction, we end up with

AQ1gpestcase = @ X 4/[0.1-—0.7]2 + 0.12 + 0.22 ~ Q x 0.23.

Hence, even in the ideal case expect an around 23% error on the estimate. As the data quality

worsens (say, A = 2, d = 50, JUZ +V ~ 10), we end up with
AQ1oworse case ~ @ X /[0.1- =12 + (0.1 - 7.3)Z + (0.1- 0.5)% ~ Q X 0.77.

Hence, in this 'bad' case, the error goes up to 77%, but as the number of overpasses
decreases this number can in principle grow to over 100%.
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The uncertainty model is itself highly uncertain as typically we assume some value for an error
(e.g., 10% for the AMF correction as also done by Beirle et al., 2019, 2023), and formulating
a more representative or precise uncertainty model is a topic of active research. Many more
terms could in principle be added, e.g., those related to the NO2>-to-NOy ratio, the ERA-5 wind
speed, and the lifetime. Some more complicated terms which should, in principle, also be
added are: (1) if there is a sampling bias towards summer months where emissions may be
lower our estimate may be too low, (2) the GNFR-A profile used to weight the winds and the
AMF profile is only a rough guess for the plume height but in reality this varies along with the
meteorological conditions, (3) the divergence method assumes steady-state conditions and
horizontally homogeneous conditions, which is not a valid assumption when meteorological
conditions are (often) changing around overpass time, (4) we ascribe all the emissions within
the integration radius to the (known) source at its center, but if other sources are nearby
(urban, industrial, biomass burning, ...) the estimate naturally doesn't apply to merely the point
source of interest and we likely overestimate the emissions.

3.3.3 Cross sectional flux method

3.3.3.1 Identification of the plume area

As a first step, the location of the emission plume is determined using the ERA-5 wind
direction. Identifying the plume area using the wind vector is more robust than a thresholding
approach, resulting in less misdetections especially for weak plumes or for emission clusters
with nearby plume (Santaren et al., 2025). The disadvantage of the approach is that it cannot
be used for estimating the NOy lifetime directly from the measurements.

2021-01-29 18:52 UTC
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Figure 5: Example of the CSF method applied to estimate NOx emissions from the New Madri Power
Plant in the United States of America. (upper) TROPOMI NO2 image on 29 January 2021 (18:52 UTC)
with plume region marked by yellow polygon. (lower) Across-plume columns in across-plume direction
with Gaussian curve fitted to estimate line densities. Emission rate (Q) is computed from line density
and wind speed (u=4.5 m/s) using a NO2-to-NOx conversion factor (f=1.32) and a NOx lifetime (1) of 4
hours. In this example, the NOx emission rate at overpass was estimated as 10.8 kt NO2z / a, while the
bottom-up inventory states an annual mean emission of 14.5 kt/a.

D2.2 13



CORSO

To define the plume area, a Bezier curve following the wind direction up to 30 km downwind
is used for computing along- and across-plume coordinates. The plume area used for
estimating the emissions is 60 km wide perpendicular to the wind speed.

3.3.3.2 Line densities

The NO: line densities are computed by fitting a Gaussian curve with a linear background to
all pixels in the plume area:

q - u)2>
— exp| ————|+my+5>b
9) N p( 252 y
where q is the line density (in kg/m), u and ¢ are centre position and standard width of the
curve (in m), and m and b are slope and intercept of a linear background.

3.3.3.3 Air mass factor

Air mass factors (AMF) are recomputed using the averaging kernels (AK) provided by the NO,
product and the NO; profile from the TM5 simulations, where the NO2 enhancement from an
initial fit of the Gaussian curve was added to the profile assuming a GNFR-A emission
distribution. NO. column densities are updated following the AMF correction and the line
densities are fitted again with the updated values to obtain the AMF-corrected line density.
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Figure 6: NOx:NOz2 ratios as a function of time since emission: (a) Median and standard deviation in
the MicroHH simulations and (b) fitted negative exponential function and corresponding standard
deviation (from Meier et al. 2024).

3.3.3.4 NOxchemistry
To estimate NOx emissions from NO; observations, it is necessary to convert the NO, to NOy

columns using an NO2-to-NOx conversion model and to account for the NOx decay since
emission. We used three methods for estimating the NO; to NOx conversion factor:

1.
2.

Outside Europe: Standard values using f = 1.32 and 1 = 4 hours.

Inside Europe: Random forest model trained with GEOS-Chem simulations to
predict NO2:NOy ratios and NOy lifetimes from geographical and meteorological
parameters. The random forest model was only available for Europe for this
deliverable (as planned). It will be possible to reprocess the emission estimates as
soon as a global model is available (CORSO D2.5 and Schooling et al. 2025),

Selected plants: MicroHH simulations with chemistry were used to determine NO; to
NOy conversion for selective power plants. The line densities are converted from NO-
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to NOy by accounting for the NO2 to NOy conversion formula f(t), which is computed
as time since of emissions (using the effective wind speed):

F@©) =m-exp(=2) + fy

where m, T and f,, are parameters (Meier et al 2024).
3.3.3.5 NOy emissions
The emission rate Q is computed as
f-u-q
X
exp (= 57)
where fis the NO, to NOy conversion factor, u is the effective wind speed, g is the line density,
x is the distance from the source (i.e., 15 km), and 1 is the NOy lifetime.

Q=

3.3.3.6 Uncertainties

The uncertainties of emissions are computed by the ddeq library, accounting for the
uncertainty of the NO2 column densities, the wind speed (using 1 m/s) and the NO2-to-NOx
conversion model. The uncertainty of background field and the cross-sectional flux method
due to assumptions such as steady-state conditions are currently not included in the
uncertainty budget.
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4 Results

In this section, we show some results from the dataset described in this document. The data
are attached and were used in Deliverable 1.3 for a detailed comparison between top-down
and bottom-up estimates of CO and NOx emissions.

4.1

Figure 7 shows location of anthropogenic and biomass burning plumes for 2021 over the
Iberian Peninsula and Nigeria obtained from TROPOMI NO, observations using the plume
detection algorithm. The figure indicates all locations where the outline of a detected plume
contains a fire detected by either VIIRS or MODIS on the same day. To consider a detected
plume as a biomass burning fire, we filter the VIIRS and MODIS datasets to only include
presumed vegetation fire and to have a medium or high confidence (for VIIRS) or greater than
50% (for MODIS). This is a crude characterisation of whether the plume originates from
anthropogenic combustion or biomass burning. As can be seen in the figure, this method
shows that most plumes characterised as biomass burning are in locations where inventories
suggest substantial biomass burning (tropics, scrubland etc). However, there are some
plumes labelled as biomass burning which are located over regions which tend not to have
biomass burning emissions (e.g. urban areas). Plume labelling in these regions may be
inaccurate. This may reflect a false detection or labelling from the VIIRS or MODIS datasets,
or where the active fire may be located anywhere in the plume boundary so that a detected
plume may straddle the location of anthropogenic and biomass burning sources. Alternatively,
the label for these detected plumes is accurate and there was a vegetation fire in these unlikely
locations. These results have not been compared to GFAS or GFED and further analysis using
these datasets could refine the plume characterisation for future iterations of this product.

Plume detection using machine-learning algorithm
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Figure 7: Map showing locations and outlines of plumes found in 2021 over the Iberian Peninsula
(left) and Nigeria (right). Plumes flagged as anthropogenic are shown in the blue and biomass burning
in orange (see text for details).

4.2 Examples for CO emissions

4.2.1

After verification of the validity and calibration of the method, we apply it to 29 of the largest
cities in Africa. These cities are chosen based on their population or because they are emitting
above the CSF's quantification threshold in the Dynamics—Aerosol-Chemistry—Cloud
Interactions in West Africa (DACCIWA) inventory (Keita et al., 2021). Figure 8 shows the
results of our TROPOMI quantification and a comparison with the DACCIWA inventory (Keita
et al., 2021) and Emissions Database for Global Atmospheric Research (EDGAR) inventory

Cross-sectional flux analysis for African mega-cities
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(Janssens-Maenhout et al., 2019). Note that we used different sizes for the city masks applied
to the bottom-up inventories to ensure a fair comparison to the satellite-based emission
estimates and found that the choice of city mask did not impact our conclusions.
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Figure 8: CSF emission quantifications for the largest African cities. Comparison between TROPOMI
CO emission estimates averaged for 2019-2021 (shown as colored circles) and the DACCIWA and
EDGAR v5 emission inventories for 2015 shown by the black (dashed) rings. The emission strength is
indicated by the size of the circles or rings. The same comparison is made in bar plots, where the first
two bars show the emission rates from DACCIWA and EDGAR respectively including the sectoral
breakdown. The third bar gives the corresponding TROPOMI estimate, where the uncertainty is given
by the range of the ensemble. The cities are ordered by geographical location. The emission estimate
for Lagos in DACCIWA extends beyond the figure boundary.

Comparison of the TROPOMI-based emission estimates to DACCIWA and EDGAR bottom-
up inventories shows that CO emission rates in northern Africa are underestimated in EDGAR,
suggesting overestimated combustion efficiencies. We see the opposite when comparing
TROPOMI to the DACCIWA inventory in South Africa and Céte d'lvoire, where CO emission
factors appear to be overestimated. Over Lagos and Kano (Nigeria), we find that potential
errors in the spatial disaggregation of national emissions cause errors in DACCIWA and
EDGAR, respectively. Finally, we show that our computationally efficient quantification method
combined with the daily TROPOMI observations can identify a weekend effect in the road-
transport-dominated CO emissions from Cairo and Algiers. For more details and further
discussion, we refer to Leguijt et al. (2023).

4.2.2 Analytical inversion over Europe's iron & steel industry

We performed analytical inversions with 2019 TROPOMI CO satellite data to determine annual
carbon monoxide emission rates for 21 European integrated iron & steel plants. These plants
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are the largest carbon monoxide point sources in Europe. Their reported facility level
emissions to the E-PRTR are used as prior estimates in our inversions. Per site, the inversion
uses one of eight simulations with different meteorology for each day to reach optimal spatial
agreement between observation and simulation. We allow for further freedom in the inversion
by optimizing the CAMS-based background daily, rather than performing annual scaling. For
a selected number of plants also a year 2020 estimate was derived (see Leguijt et al., 2025).

In addition to making use of inversions, TROPOMI CO data can be used to determine emission
rates using simpler "mass balance" methods like the Cross-Sectional Flux (CSF) method.
Leguijt et al. (2023) found a lower limit of 100 Gg/year to let the CSF method be able to
estimate these emissions when applied to synthetic (model simulated) TROPOMI data. Seven
of the studied plants; Arcelor Dunkerque, Gent, Dubrowie, Port Talbot S Works, Thyssen
Schwelgern, Huttenwerke Duisburg, and U.S. Steel s.r.o., have reported annual emission
rates above 100 Gg and therefore merit the application of the CSF. The results are shown in
Figure 9. The comparison of the results with reported emissions data will be further analyzed
as part of CORSO Task 1.3, where the intention is to also include the co-emitted NOx
emissions.

300 CSF
Inversion
250
=
2200
o
=
]
L
fu
c 150
=]
w
0
£
w
50 ‘ ‘
0
cpurd a(m que orks ANiE 1.0
Nce\ov puis o sc\‘\‘”e‘q \of Dun\ce' P W celor b 0S Stee\s
g e TS e N8 e PO o M 2V

Figure 9: Comparison of year 2019 inversion-based TROPOMI CO emission estimates with estimates
from the mass-balance cross sectional flux (CSF) method. As the lower limit for the TROPOMI-based
CSF method was estimated at 100 Gg per year, only the plants with prior or posterior estimates above
this value are compared. The error bars show the spread in estimated emissions over an ensemble of
inversions with perturbed configuration parameters such a meteorological data or selection criteria.

4.3 Examples for NOxemissions

The CSF and DIV method for quantifying NOx emissions of point sources was applied to the
strongest 100 point sources in the CORSO point source database, considering only sources
that are not near other sources. The list includes Belchatow and Janschwalde power plants
for which MicroHH simulations are available. Furthermore, we made sure that at least ten
sources were in Europe and the USA, where bottom-up estimates are expected to be of high
quality. For Europe, we specially processed 20 iron/steel plants for which also CO emissions
were estimated. For USA, we processed 12 power plants where daily NOx emission reports
are available.
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Figure 10 compares annual emission of bottom-up and top-down methods for 20 point sources
in Europe (EU27+UK) and USA. Overall, the agreement is very good for sources located in
countries where bottom-up emissions are known well, providing confidence that satellite-
based NO, emission estimates provide sufficiently accurate estimates for regions where
bottom-up estimates are less accurate.
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Figure 10: Example of annual estimated of NOx emissions of point sources in Europe and USA,
comparing bottom-up estimates from CORSO point source database (Version 1.0) with top-down
estimates from the cross-sectional flux and divergence method. The deviations between bottom-up and
top-down are analyzed and discussed in CORSO Deliverable 1.3. Countries are shown using 1SO3
abbreviations.

Figure 11 compares time series for two European power plants, Befchatow and Janschwalde,
and one U.S. power plant, Miami Fort, illustrating the impact of NO2-to-NOy conversion factors
and temporal variability of emissions.

The Miami Fort time series includes daily bottom-up emission estimates, which reveal high
emissions during winter and very low emissions from May to October. NOx emissions derived
from TROPOMI satellite observations show similar seasonal patterns, particularly when
comparing monthly averages. This suggests that the satellite-based approach is well-suited
for capturing the temporal variability of NO, emissions.

A large uncertainty of the top-down NOy emission estimates is related to the correction for NOy
chemistry, which includes the NO,-to-NOx conversion factor f and the NO; lifetime t. The
timeseries shows the estimates using the machine-learning (ML) model trained with GEOS-
Chem simulation. The annual top-down estimates are shown using three different methods.
First, default literature values for f (=1.32) and 7 (=4 h) as used outside Europe. Second, the
values from the ML model as used inside Europe (Schooling et al., 2025). Finally, values from
plume-resolving chemistry simulations with the MicroHH model are used that are only
available for selected power plants (Meier et al., 2024; Krol et al., 2024). The top-down
estimates of annual NOy emissions are similar using the default literature values and the ML
model, because annual averages of NO2-to-NOy conversion factor and NOy lifetime from the
model are quite consistent with the literature values. The NO2-to-NOy conversion factors
derived from MicroHH simulations are higher, slightly increasing the annual estimates. In
addition, we used a lifetime of 2 h, which is the median found by Meier et al. (2024), when
applying the CSF method to several cross sections downstream of the power plants, which
allows for estimating the lifetime.

This analysis suggests that top-down estimates using the CSF method can underestimate
NOx emissions by approximately 20-50%. We therefore provide conversion factors and
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additional parameters with the dataset, enabling users to update NOy chemistry corrections
when more reliable data are available.
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Figure 11: Example of time series of estimated NOx emissions from cross-sectional flux method
compared to bottom-up CORSO point source database (Version 1.0). For Belchatow and Janschwalde
power plant, top-down estimates are given for the three different methods used for accounting for NOx
chemistry. For Miami Fort power plant, daily bottom-up estimates are available, showing good
agreement with top-down estimates. The deviations between bottom-up and top-down are analyzed
and discussed in CORSO Deliverable 1.3.

5 Future work

The dataset will be used in Task 1.3 for evaluating the time profiles.
The dataset has reference DOI 10.5281/zenodo.16838558
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