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1 Executive Summary 

This work was carried out within Work Package 2 (WP2), which aims to improve the estimation 
of anthropogenic emissions by leveraging co-emitted species in support of the future CO2 
Monitoring and Verification Support (CO2MVS) system. Nitrogen dioxide (NO2) and carbon 
monoxide (CO) observations are available with higher spatial and temporal coverage than 
CO2 observations from instruments like TROPOMI on Sentinel-5P. NO2 is also observed by 
satellites with higher precision than carbon dioxide (CO2), making it a valuable tracer for 
anthropogenic emissions. 

This report supports WP2 objectives by detailing the methodology and results of using 
TROPOMI satellite observations of NO2 and CO columns to quantify emissions from urban 
areas, power generation facilities, and iron and steel plants. Emission plumes of NO2 and CO 
are identified in individual satellite overpasses using plume detection algorithms. 
Subsequently, NOx and CO emissions are estimated through data-driven mass balance 
approaches and analytical inversion methods. 

The report is accompanied by several NetCDF files containing 2021 time series of estimated 
NOx and CO emissions for selected megacities, power plants, and iron and steel production 
sites across Africa and Europe. 
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2 Introduction 

2.1 Background 

To enable the European Union (EU) to move towards a low-carbon economy and implement 
its commitments under the Paris Agreement, a binding target was set to cut emissions in the 
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von 
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further 
consolidated with the release of the Commission's European Green Deal on the 11th of 
December 2019, setting the targets for the European environment, economy, and society to 
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and 
societal transformations that are aiming at combining prosperity and sustainability. To support 
EU countries in achieving the targets, the EU and European Commission (EC) recognised the 
need for an objective way to monitor anthropogenic CO2 emissions and their evolution over 
time.  

Such a monitoring capacity will deliver consistent and reliable information to support informed 
policy- and decision-making processes, both at national and European level. To maintain 
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO2 emissions Monitoring and Verification Support (MVS) 
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.  

The CORSO research and innovation project will build on and complement the work of 
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2 
service) projects, both led by ECMWF.  These projects have already started the ramping-up 
of the CO2MVS prototype systems, so it can be implemented within the Copernicus 
Atmosphere Monitoring Service (CAMS) with the aim to be operational by 2026. The CORSO 
project will further support establishing the new CO2MVS addressing specific research & 
development questions. 

The main objectives of CORSO are to deliver further research activities and outcomes with a 
focus on the use of supplementary observations, i.e., of co-emitted species as well as the use 
of auxiliary observations to better separate fossil fuel emissions from the other sources of 
atmospheric CO2. CORSO will deliver improved estimates of emission factors/ratios and their 
uncertainties as well as the capabilities at global and local scale to optimally use observations 
of co-emitted species to better estimate anthropogenic CO2 emissions. CORSO will also 
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value 
of high-temporal resolution 14CO2 and APO observations as tracers for anthropogenic 
emissions in both global and regional scale inversions and develop coupled land-atmosphere 
data assimilation in the global CO2MVS system constraining carbon cycle variables with 
satellite observations of soil moisture, LAI, SIF, and Biomass. Finally, CORSO will provide 
specific recommendations for the topics above for the operational implementation of the 
CO2MVS within the Copernicus programme. 

2.2 Scope of WP-2 

The work presented in this report is part of WP2 of CORSO, which deals with “Use of co-
emitted species (correlations, improved emission ratios, uncertainties) in data assimilation 
systems". The aim of WP2 is to enhance the use of observations of co-emitted species (NO2, 
CO) to better estimate anthropogenic CO2 emissions in the future CO2MVS capacity. This is 
based on the recognition that anthropogenic CO2 emissions cannot completely be constrained 
with CO2 concentration observations alone, and the detectability of the anthropogenic signal 
of co-emitted species is often much better than that of CO2. For the emission estimation 
development at local scale, this WP focuses on the development of methods to increase the 
accuracy of annual CO2 emission estimates of hot spots, industrial and urban areas by 
integrating satellite observations of co-emitted species (NO2 and CO) in data assimilation 
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systems. Since CO2 satellite observations are temporally sparse (even with the future CO2M 
constellation), temporal sampling biases are a significant source of uncertainty in annual CO2 
emission estimates of hot spots. Co-emitted species such as CO and NO2 are and will be 
available at sub-diurnal temporal coverage from current and future LEO and GEO satellites. 
They can therefore be used to improve the constraint on the temporal variability of CO2 
emissions and hence for reducing the uncertainty in annual estimates. The local and regional 
studies will focus on three regions: Europe, Africa, and Southeast Asia.  

2.2.1 Objectives of this deliverable 

The objectives of this deliverable are to provide estimates of CO and NOx emissions of hot 
spots for Africa, Europe and Southeast Asia using Sentinel-5P/TROPOMI NO2 and CO 
observations and Geostationary Environment Monitoring Spectrometer (GEMS) NO2 
observations. Since GEMS currently does not provide NO2 observations for 2021, the current 
version of the deliverable only uses TROPOMI observations. The dataset will be used in WP1 
(Task 1.3) for validating the bottom-up inventories. 

The title of this deliverable is “Time series of NOx and CO emissions of hot spots in Africa, 
Europe and SE Asia in reference year”. The deliverable contains this report, which describes 
the methodology and several dataset files, which is given separately as a zip file, containing 
the time series of NOx and CO emissions for different hot spots. 

2.2.2 Work performed in this deliverable 

This deliverable was accomplished through a series of activities detailed in Section 3: 

• Gathering of NO2 and CO observations from the TROPOMI instrument. 

• Gathering of wind fields from the ERA-5. 

• Development and improvement of plume detection and quantification methods for 

determining CO and NOx emissions of hot spots.  

• Application of the methods to selected megacites, power plants and iron/steel plants 

to generate a time series of CO and NOx emissions for 2021. 

• Compiling the files containing time series of emissions. 

2.2.3 Deviations and counter measures 

Access to GEMS NO2 data has been delayed and thus only TROPOMI NO2 data were used 
in this version. 

2.3 Project partners 

Partners  

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

ECMWF 

AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA 
STASZICA W KRAKOWIE 

AGH 

BARCELONA SUPERCOMPUTING CENTER - CENTRO 
NACIONAL DE SUPERCOMPUTACION 

BSC 

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES 
ALTERNATIVES 

CEA 

KAMINSKI THOMAS HERBERT iLab 

METEO-FRANCE MF 

NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

TNO 

RIJKSUNIVERSITEIT GRONINGEN RUG 

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG UHEI 
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LUNDS UNIVERSITET ULUND 

UNIVERSITE PAUL SABATIER TOULOUSE III  UT3-CNRS 

WAGENINGEN UNIVERSITY WU 

EIDGENOSSISCHE MATERIALPRUFUNGS- UND 
FORSCHUNGSANSTALT 

EMPA 

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH ETHZ 

UNIVERSITY OF BRISTOL UNIVBRIS 

THE UNIVERSITY OF EDINBURGH UEDIN 
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3 Data and methods 

This deliverable describes the input data and methods used for estimating time series of CO 
and NOx emissions from hot spots using Sentinel-5P/TROPOMI CO and NO2 observations for 
year 2021. The dataset includes hot spots in Africa, Europe and Southeast Asia. The data 
product will be used in Task 1.3 for evaluating the bottom-up emission estimates prepared for 
the same year. 

3.1 Plume detection using machine-learning algorithm 

3.1.1 Image segmentation 

This work builds on a previous NO2 plume detection model (Finch et al., 2022), which used a 
convolutional neural network (CNN) to classify images of TROPOMI tropospheric NO2 column 
data as to whether or not they contained an emission plume. This model had limitations as 
there was no information on the location or size of the plume, or whether the image contained 
multiple plumes. The model was only successful if a plume was contained within a pre-defined 
image size; therefore, any plumes larger than the image size, or crossing between two or more 
images introduced inaccuracies in the detection. To address these issues, a segmentation 
model was developed. This generates a mask indicating the probable location of the plume 
and includes a method for merging plumes that span multiple images 

A U-Net style model is used, consisting of a series of down-sampling blocks, each containing 
a double convolutional layer, a max pooling layer and a dropout layer set at 20%. This is 
followed by a double convolutional layer, which determines the important features of the input 
image. Subsequently, up-sampling blocks reconstruct the image to its original dimensions, 
producing a mask of the predicted plume. A schematic of the model is shown in Figure 1. 

 

Figure 1: Schematic of the U-Net architecture used to develop the plume detection models. An input 
image (top left) goes through four downsampling blocks (green) made from convolutional, max 

pooling and dropout layers. The image is then put through a double convolutional layer (orange) to 
detect patterns, and a mask (top right) is built by passing the image through four upsample blocks 
(blue) consisting of a transponse convolutional, concatenation, dropout and a convolutional layer.  

The model input is a normalised 32 x 32-pixel section of the TROPOMI swath with an output 
of the same size. To manage plumes that are larger than the image or straddling multiple 
images, each TROPOMI swath is split into overlapping images created from a rolling window 
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of four pixels in both the along-swath and across-swath directions. This process generates 
approximately 100,000 images per swath, which are fed into the model. Each image is then 
passed through the plume detection model and the swath is rebuilt from the predicted output 
based on the median of the mask prediction. The final product is an array the same size as 
the original swath containing the predicted masks. Finally, OpenCV is used to detect each 
individual plume mask in the swath regardless of the size or shape.   

To train the plume detection model, plume masks were drawn for 702 images, where 
approximately 30% of these had multiple plumes within them. The dataset was augmented by 
flipping and rotating the images creating a final training dataset of 4,914 images. This was 
then randomly split into 80% training and 20% testing data. The plumes chosen to train the 
model were taken from random swaths from anytime during 2019 from across the globe. This 
reduces the chance of selecting neighbouring images and therefore reduces the chances of 
auto-correlation between images in space or time. 

To get an indication of whether the detected plume is likely to be from a biomass burning 
source, the plumes are compared to the locations of fire detections in VIIRS and MODIS data. 
A plume is marked with a biomass burning flag if there are fire detections from either VIIRS or 
MODIS within the plume boundary on the same date as the plume. 

3.1.2 Emission quantification 

To estimate an emission Q rate associated with a plume we use the integrated mass 
enhancement (IME) method following equation:  

𝑄  =  
∆𝑀 × 𝑈

𝐿
 

where ∆M is the integrated mass enhancement of the plume compared to the background (in 
kg), U is the wind speed (in m s-1) and L is the length of the plume (in metres). To calculate 
the mass enhancement of the plume in relation to the background, first the boundary of the 
plume is determined by finding the outline of the predicted plume mask. Figure 2 shows a 
typical plume found in TROPOMI data with associated plume boundary. 

 
Figure 2: Normalized plume from the TROPOMI data, with predicted mask boundary (red), fitted 

ellipse (light blue), and plume primary axis (white) on the left, and pixel area for the same image with 
the plume boundary (white) shown for context. 

Using the pixel area, the mass of gas within each pixel is calculated from the TROPOMI 
column observations (molecules per m2). The mass of the plume within the boundary can be 
calculated, and the background mass is taken as the median mass of all pixels within the 
image but outside the plume boundary. The mass enhancement is the difference between 
these two values. The length of the plume is determined by fitting an ellipse to the plume using 
the OpenCV package in python.  

The wind speed is taken as the median wind speed within the plume boundary. The wind 
speed used is the ECMWF 10 m U and V wind vectors. The angle between wind speed and 
the direction of the plume is calculated and can be used for filtering of plumes, since, if the 
direction of a plume does not align with the wind direction, then it may not be a genuine plume. 
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This filtering was not applied for the results shown here as more refining and quality checking 
is needed to be confident in the results.  

3.2 CO emissions of hot spots from TROPOMI CO observations 

Two types of CO hotspots have been investigated. Emissions of urban areas are estimated 
through the cross-section flux (CSF) method. Iron & steel plants, which tend to have lower 
emission rates than the urban areas, have their emissions quantified using an analytical 
inversion. 

3.2.1 Cross-sectional flux analysis for African mega-cities  

Here we give a short overview of the CSF method as applied to mega-cities in Africa, a detailed 
description of the algorithm is given in Leguijt et al. (2023). Using three years of quality-filtered 
operational TROPOMI CO data (Landgraf et al., 2018), the emission rates of 29 mega-cities 
in Africa are estimated. Each overpass, pixels with enhanced CO concentrations downwind of 
the city are selected as part of the plume. Despite using multiple wind products (10 meter 
altitude wind fields from NASA/GMAO GEOS-FP reanalysis data, planetary boundary layer 
averaged GEOS-FP reanalysis data and the 10 meter altitude wind fields from the ECMWF 
ERA5 product – (Molod et al., 2012; Hersbach et al., 2020) wind field information is a major 
contributor of uncertainty to the final emission estimate. Therefore, the wind direction is 
redetermined based on the plume direction, under the assumption that the enhanced 
concentrations move with the wind. 

Following the determination of plume pixels, a 2D spline is fit through the plume, perpendicular 
to which cross-sections are drawn. In the absence of a clear plume, a rectangular box is used 
to draw down-wind cross-sections. Integration of enhancements along the cross-sections and 
multiplication with the local wind-speed yields daily emission estimates. Enhancements are 
calculated by subtracting the mean concentration in an up-wind box. The choice for an upwind 
background estimation allows application to a large number of sources, despite large variation 
in observed plume shapes, plume widths and plume sizes. 

 

Figure 3:  Example of the CSF method applied to estimate CO emissions from Cairo on two individual 
days from Leguijt et al. (2023): (a) TROPOMI CO image on 7 April 2019 The arrows show 10-meter 
altitude winds from the GEOS-FP reanalysis data, with wind speed defined by length as well as gray 
shading . (b) Fitting a 2D spline through enhanced pixels, the shape of the plume is determined. The 
spline, and perpendicular cross-sections are shown in blue. The background is determined using the 
region indicated with the black box. (c) CO concentrations over Cairo measured by TROPOMI on the 
27 March 2020. Due to the absence of a clearly observable plume, a spline fit is not possible, and a 

rectangular box is used instead. 
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The final CSF algorithm was tested on plumes simulated with the Weather Research and 
Forecasting (WRF) model as explained in Leguijt et al. (2023). 

3.2.2 Analytical inversion over Europe's iron & steel industry 

Integrated iron & steel plants, which are plants covering the entire conversion from iron ore to 
steel, are the largest CO sources in Europe. However, although few plants report emissions 
above 100 Gg per year, the majority of the plants has emission rates below what can be 
quantified using the CSF as implemented in Section 3.2.1. To accurately quantify the emission 
rates of the individual plants, an analytical inversion was used, as described in (Leguijt et al., 
2025). Here we will give a short summary of the implemented method. 

Members of the European Union are required to report facility-level emission rates to the 
European Pollutant Release and Transfer Register (E-PRTR, 2023), this framework was used 
as prior emission estimates. Using WRF as forward model, 3D concentration fields were 
simulated for the 21 largest iron & steel plants of Europe. The prior emissions were 
supplemented with the TNO GHGco inventory version 4 (Kuenen et al., 2022) for the 
anthropogenic emissions and boundary conditions from the air pollutant forecast product of 
the Copernicus Atmosphere Monitoring Service (CAMS). The resulting 3D fields are converted 
into total columns using the TROPOMI averaging kernel to allow proper comparison to the 
columns measured by TROPOMI. 

Optimizing the cost function 𝐽(𝑥), given by 

𝐽(𝑥) = (𝑥 − 𝑥𝐴)
𝑇𝑆𝐴
−1(𝑥 − 𝑥𝐴) + 𝛾(𝑦 − 𝐾𝑥)

𝑇𝑆𝑂
−1(𝑦 − 𝐾𝑥). 

Here, 𝑥𝐴 represents the prior emissions, 𝑆𝐴 the prior error covariance matrix, 𝛾 the 
regularization parameter, 𝑦  the observed concentrations, 𝐾  the Jacobian and 𝑆𝑂 the 

observational error covariance matrix. The two terms comprising 𝐽(𝑥) represent departure 
from the prior and difference between simulation and observation. 

As 𝑦 − 𝐾𝑥 , is evaluated per pixel, spatial mismatches between simulation and observation will 
result in underestimation of the emission rate. This effect was remedied by aggregating the 
observations. In addition, an ensemble of plumes was simulated by running the WRF model 
with different boundary layer schemes. The optimal simulation was determined on a daily 
basis. 

To verify the inversion emission estimates with prior-independent methods, a CSF, as 
discussed in Section 3.2.1, was applied to the 7 largest plants, which all report emission rates 
above the 100 Gg threshold. In addition, the simulations were extended to the year 2020 for 
4 plants. Differences in emissions between 2019 and 2020 for these plants were compared to 
trends in oversampled wind-rotated data as in Clarisse et al. (2019) . 

3.3 NOx emissions of hot spots from TROPOMI NO2 observations 

NOx emissions of hot spots are estimated using the divergence (DIV) method and the cross-
sectional flux (CSF) method implemented in the Python library for data-driven emission 
quantification  (ddeq; Kuhlmann et al., 2024). ddeq is an open-source library that was originally 
developed for the ESA SMARTCARB project for estimating CO2 emissions from synthetic 
CO2M data (Kuhlmann et al., 2019; Kuhlmann et al., 2021). In the CoCO2 project, the library 
was extended with additional methods and used for benchmarking different methods for 
emission quantification of hot spots (Hakkarainen et al., 2024; Santaren et al., 2025). 

3.3.1 Input data 

The Sentinel-5P/TROPOMI NO2 product (Version 3.6.2) for 2021 was downloaded from the 
Copernicus Dataspace (https://dataspace.copernicus.eu/). For wind data, the global ERA-5 
reanalysis was obtained on pressure levels (Hersbach et al., 2020). The effective wind speed 

https://dataspace.copernicus.eu/
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for each source was computed using the standard emission profile for power plants (GNFR-A 
profile, Brunner et al. (2019)).  

3.3.2 Divergence method 

Emission estimates using the divergence method (Beirle et al., 2019; Koene et al., 2024) were 

obtained by first computing a global flux map 𝐹 at a common resolution of 0.03 degrees (𝐹 =

∇ ⋅ (𝑈⃗⃗  VCD) +
VCD

𝜏
, where 𝑈⃗⃗  is the GNFR-A weighed wind, VCD is the tropospheric NO2 column, 

and 𝜏 was set to 4 hours representing the expected lifetime; 𝐹 is the yearly-averaged version 
of this dataset). The divergence operation was computed on the native TROPOMI grid before 
conservatively remapping the result onto a common grid.  

Air mass factors (AMF) are used to convert slant column densities (SCD) obtained from the 
spectral fitting to vertical column densities (VCD): 

𝑉𝐶𝐷 =
𝑆𝐶𝐷

𝐴𝑀𝐹
   with   𝐴𝑀𝐹 =

∑ 𝑉𝐶𝐷𝑙 ⋅ 𝐴𝑀𝐹𝑙𝑙

∑ 𝑉𝐶𝐷𝑙𝑙
  

where 𝐴𝑀𝐹𝑙 are the 1D-layer AMFs and 𝑉𝐶𝐷𝑙 are the layer NO2 VCDs taken from low-
resolution global TM5 simulations. Following the TROPOMI user manual, we recalculated the 
VCD using an updated expected profile matched with the GNFR-A profile, allowing us to 
compute 

VCD𝑛𝑒𝑤 =
∑ (𝑥𝑖)𝑖

𝑀
𝑀𝑇
∑ (𝐴𝑇𝑥𝑖)𝑖

VCD𝑇𝑅𝑂𝑃𝑂𝑀𝐼 , 

where 𝑥𝑖 is the new profile defined on the same pressure grid as the averaging kernel (AK) 
𝐴𝑇, 𝑀 is the total air mass factor and 𝑀𝑇 is the tropospheric air mass factor, and VCD𝑇𝑅𝑂𝑃𝑂𝑀𝐼 

is the TROPOMI tropospheric NO2 VCD. The ratio ∑ (𝑥𝑖)𝑖
𝑀

𝑀𝑇
∑ (𝐴𝑇𝑥𝑖)𝑖⁄  is referred to as the 

AMF correction factor, which is used to correct the estimated emissions at a source (Beirle et 
al., 2023)  

After computing the flux map 𝐹 we estimated emissions for individual sources by integrating 
the mass within geodesic circles centred on each source. The circle radii ranged from 1 to 60 
km in 1 km increments. For each radius, the integrated NO2 mass is multiplied with  an 
estimate of the NO2-to-NOx ratio of 1.65 + 0.5 × 𝑉𝐶𝐷/𝑉𝐶𝐷𝑚𝑎𝑥 (i.e., the conversion factor 
increases when there is a lot of NO2), which was chosen to provide reasonable factors for 
power plants where conversion factors are available from MicroHH simulations (Belchatow, 
Jänschwalde and Matimba/Medupi) (Meier et al., 2024; Krol et al., 2024). Next, the local 5x5 
mean of the AMF correction factor is applied to scale the emissions. An example of this 
procedure is seen in Figure 4. To determine the optimal integration radius (i.e., the point where 
additional area no longer meaningfully corresponds to the selected source), we analysed the 
shape of the cumulative curve. The selected radius was the smallest radius at which (A) the 
first derivative of the cumulative curve became negative (i.e., the curve peaked), or (B) the 
second derivative crossed from negative to positive (i.e., the curve began to bend upward 
again, indicating another source was integrated too). This curvature-based method proved 
effective in isolating the emissions from a single source while avoiding contributions from 
nearby sources. 
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Figure 4: Application of the divergence method to estimate NOx emissions from the New Madrid Power 
Plant, USA. Left: Cumulative integration of NO2 mass as a function of increasing radius from the source. 
Right: Computed flux map with selected integration radius shown by the circle. The total estimated 
emissions from all bottom-up sources (shown as a blue scatter plot) within the selected radius are also 
indicated. See main text for details. 

Finally, after estimating annual emissions, the same approach was applied on a monthly scale 

– by recomputing 𝐹 on a monthly scale, but while re-using the AMF correction factor and 
selected integration radius from the annual data. Only the NO2-to-NOx conversion factor varies 
for one month of data at a time. 

3.3.2.1 Uncertainty 

The uncertainty of the estimates is computed using the principle of quadratic error propagation 
(also known as root-sum-squares error propagation). It is calculated using the heuristic 
formula for Δ𝑄1𝜎 which we define as an estimate of the '1𝜎' uncertainty 

Δ𝑄1𝜎 = 𝑄 × √[0.1(1 − 𝐴)]
2 + (0.1

365

d
)
2

+

(

 0.1
√𝑈

2
+ 𝑉

2

𝑑

)

 

2

+ 0.22 

where 𝑄 is the emission estimate (i.e., the uncertainty is proportional to the size of the 

estimate), 𝐴 is the air mass factor correction (i.e., this is a small error term scoring the fact that 
we modified our data with a number that has its own uncertainty), 𝑑 is the number of valid 
overpasses for which the quality factor was 0.75 or larger (i.e., if we have daily good quality 
overpasses, we would have 𝑑 = 365 and the error term would correspondingly be small; if we 

have fewer overpasses the error term increases proportionally), √𝑈
2
+ 𝑉

2
 is the yearly mean 

effective wind speed in meters per second (i.e., if there is a net yearly wind in a particular 
direction, the divergence map exhibits certain artifacts as we have observed in the data). The 
final term adds a final fixed expected error. Thus, in the ideal case where the AMF correction 
is not large (𝐴 ≈ 1.7), there is a lot of good data (𝑑 ≈ 365), and we have no net yearly wind in 
a particular direction, we end up with 

Δ𝑄1𝜎,best case ≈ 𝑄 ×√[0.1 ⋅ −0.7]
2 + 0.12 + 0.22 ≈ 𝑄 × 0.23. 

Hence, even in the ideal case expect an around 23% error on the estimate. As the data quality 

worsens (say, 𝐴 ≈ 2, 𝑑 = 50, √𝑈
2
+ 𝑉

2
≈ 10), we end up with 

Δ𝑄1𝜎,worse case ≈ 𝑄 × √[0.1 ⋅ −1]
2 + (0.1 ⋅ 7.3)2 + (0.1 ⋅ 0.5)2 ≈ 𝑄 × 0.77. 

Hence, in this 'bad' case, the error goes up to 77%, but as the number of overpasses 
decreases this number can in principle grow to over 100%. 
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The uncertainty model is itself highly uncertain as typically we assume some value for an error 
(e.g., 10% for the AMF correction as also done by Beirle et al., 2019, 2023), and formulating 
a more representative or precise uncertainty model is a topic of active research. Many more 
terms could in principle be added, e.g., those related to the NO2-to-NOx ratio, the ERA-5 wind 
speed, and the lifetime. Some more complicated terms which should, in principle, also be 
added are: (1) if there is a sampling bias towards summer months where emissions may be 
lower our estimate may be too low, (2) the GNFR-A profile used to weight the winds and the 
AMF profile is only a rough guess for the plume height but in reality this varies along with the 
meteorological conditions, (3) the divergence method assumes steady-state conditions and 
horizontally homogeneous conditions, which is not a valid assumption when meteorological 
conditions are (often) changing around overpass time, (4) we ascribe all the emissions within 
the integration radius to the (known) source at its center, but if other sources are nearby 
(urban, industrial, biomass burning, …) the estimate naturally doesn't apply to merely the point 
source of interest and we likely overestimate the emissions. 

3.3.3 Cross sectional flux method 

3.3.3.1 Identification of the plume area 

As a first step, the location of the emission plume is determined using the ERA-5 wind 
direction. Identifying the plume area using the wind vector is more robust than a thresholding 
approach, resulting in less misdetections especially for weak plumes or for emission clusters 
with nearby plume (Santaren et al., 2025). The disadvantage of the approach is that it cannot 
be used for estimating the NOx lifetime directly from the measurements. 

  

Figure 5:  Example of the CSF method applied to estimate NOx emissions from the New Madri Power 
Plant in the United States of America. (upper) TROPOMI NO2 image on 29 January 2021 (18:52 UTC) 
with plume region marked by yellow polygon. (lower) Across-plume columns in across-plume direction 
with Gaussian curve fitted to estimate line densities. Emission rate (Q) is computed from line density 
and wind speed (u=4.5 m/s) using a NO2-to-NOx conversion factor (f=1.32) and a NOx lifetime (τ) of 4 
hours. In this example, the NOx emission rate at overpass was estimated as 10.8 kt NO2 / a, while the 
bottom-up inventory states an annual mean emission of 14.5 kt/a. 
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To define the plume area, a Bezier curve following the wind direction up to 30 km downwind 
is used for computing along- and across-plume coordinates. The plume area used for 
estimating the emissions is 60 km wide perpendicular to the wind speed.  

3.3.3.2 Line densities 

The NO2 line densities are computed by fitting a Gaussian curve with a linear background to 
all pixels in the plume area: 

𝑔(𝑦) =
𝑞

√2𝜋𝜎
exp(−

(𝑦 − 𝜇)2

2𝜎2
) +𝑚𝑦 + 𝑏 

where 𝑞 is the line density (in kg/m), 𝜇 and 𝜎 are centre position and standard width of the 
curve (in m), and m and b are slope and intercept of a linear background. 

3.3.3.3 Air mass factor 

Air mass factors (AMF) are recomputed using the averaging kernels (AK) provided by the NO2 
product and the NO2 profile from the TM5 simulations, where the NO2 enhancement from an 
initial fit of the Gaussian curve was added to the profile assuming a GNFR-A emission 
distribution. NO2 column densities are updated following the AMF correction and the line 
densities are fitted again with the updated values to obtain the AMF-corrected line density. 

 

Figure 6: NOx:NO2 ratios as a function of time since emission: (a) Median and standard deviation in 
the MicroHH simulations and (b) fitted negative exponential function and corresponding standard 

deviation (from Meier et al. 2024). 

3.3.3.4 NOx chemistry 

To estimate NOx emissions from NO2 observations, it is necessary to convert the NO2 to NOx 
columns using an NO2-to-NOx conversion model and to account for the NOx decay since 
emission. We used three methods for estimating the NO2 to NOx conversion factor: 

1. Outside Europe: Standard values using f = 1.32 and τ = 4 hours. 

2. Inside Europe: Random forest model trained with GEOS-Chem simulations to 
predict NO2:NOx ratios and NOx lifetimes from geographical and meteorological 
parameters. The random forest model was only available for Europe for this 
deliverable (as planned). It will be possible to reprocess the emission estimates as 
soon as a global model is available (CORSO D2.5 and Schooling et al. 2025), 

3. Selected plants: MicroHH simulations with chemistry were used to determine NO2 to 
NOx conversion for selective power plants. The line densities are converted from NO2 



 

CORSO  
 

D2.2  15 

to NOx by accounting for the NO2 to NOx conversion formula 𝑓(𝑡), which is computed 
as time since of emissions (using the effective wind speed): 

𝑓(𝑡) = 𝑚 ⋅ exp (−
𝑡

𝑟
) + 𝑓0 

where 𝑚, 𝜏 and 𝑓0 are parameters (Meier et al 2024). 

3.3.3.5 NOx emissions 

The emission rate 𝑄 is computed as 

𝑄 =
𝑓 ⋅ 𝑢 ⋅ 𝑞

exp (−
𝑥
𝑢𝜏
)
 

where f is the NO2 to NOx conversion factor, u is the effective wind speed, q is the line density, 
x is the distance from the source (i.e., 15 km), and τ is the NOx lifetime. 

3.3.3.6 Uncertainties 

The uncertainties of emissions are computed by the ddeq library, accounting for the 
uncertainty of the NO2 column densities, the wind speed (using 1 m/s) and the NO2-to-NOx 
conversion model. The uncertainty of background field and the cross-sectional flux method 
due to assumptions such as steady-state conditions are currently not included in the 
uncertainty budget.  
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4 Results 

In this section, we show some results from the dataset described in this document. The data 
are attached and were used in Deliverable 1.3 for a detailed comparison between top-down 
and bottom-up estimates of CO and NOx emissions. 

4.1 Plume detection using machine-learning algorithm  

Figure 7 shows location of anthropogenic and biomass burning plumes for 2021 over the 
Iberian Peninsula and Nigeria obtained from TROPOMI NO2 observations using the plume 
detection algorithm. The figure indicates all locations where the outline of a detected plume 
contains a fire detected by either VIIRS or MODIS on the same day. To consider a detected 
plume as a biomass burning fire, we filter the VIIRS and MODIS datasets to only include 
presumed vegetation fire and to have a medium or high confidence (for VIIRS) or greater than 
50% (for MODIS). This is a crude characterisation of whether the plume originates from 
anthropogenic combustion or biomass burning. As can be seen in the figure, this method 
shows that most plumes characterised as biomass burning are in locations where inventories 
suggest substantial biomass burning (tropics, scrubland etc). However, there are some 
plumes labelled as biomass burning which are located over regions which tend not to have 
biomass burning emissions (e.g. urban areas). Plume labelling in these regions may be 
inaccurate. This may reflect a false detection or labelling from the VIIRS or MODIS datasets, 
or where the active fire may be located anywhere in the plume boundary so that a detected 
plume may straddle the location of anthropogenic and biomass burning sources. Alternatively, 
the label for these detected plumes is accurate and there was a vegetation fire in these unlikely 
locations. These results have not been compared to GFAS or GFED and further analysis using 
these datasets could refine the plume characterisation for future iterations of this product.  
 

 

Figure 7: Map showing locations and outlines of plumes found in 2021 over the Iberian Peninsula 
(left) and Nigeria (right). Plumes flagged as anthropogenic are shown in the blue and biomass burning 

in orange (see text for details). 

4.2 Examples for CO emissions 

4.2.1 Cross-sectional flux analysis for African mega-cities 

After verification of the validity and calibration of the method, we apply it to 29 of the largest 
cities in Africa. These cities are chosen based on their population or because they are emitting 
above the CSF's quantification threshold in the Dynamics–Aerosol–Chemistry–Cloud 
Interactions in West Africa (DACCIWA) inventory (Keita et al., 2021). Figure 8 shows the 
results of our TROPOMI quantification and a comparison with the DACCIWA inventory (Keita 
et al., 2021) and Emissions Database for Global Atmospheric Research (EDGAR) inventory 
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(Janssens-Maenhout et al., 2019). Note that we used different sizes for the city masks applied 
to the bottom-up inventories to ensure a fair comparison to the satellite-based emission 
estimates and found that the choice of city mask did not impact our conclusions. 

 

Figure 8: CSF emission quantifications for the largest African cities. Comparison between TROPOMI 
CO emission estimates averaged for 2019–2021 (shown as colored circles) and the DACCIWA and 
EDGAR v5 emission inventories for 2015 shown by the black (dashed) rings. The emission strength is 
indicated by the size of the circles or rings. The same comparison is made in bar plots, where the first 
two bars show the emission rates from DACCIWA and EDGAR respectively including the sectoral 
breakdown. The third bar gives the corresponding TROPOMI estimate, where the uncertainty is given 
by the range of the ensemble. The cities are ordered by geographical location. The emission estimate 
for Lagos in DACCIWA extends beyond the figure boundary. 

Comparison of the TROPOMI-based emission estimates to DACCIWA and EDGAR bottom-
up inventories shows that CO emission rates in northern Africa are underestimated in EDGAR, 
suggesting overestimated combustion efficiencies. We see the opposite when comparing 
TROPOMI to the DACCIWA inventory in South Africa and Côte d'Ivoire, where CO emission 
factors appear to be overestimated. Over Lagos and Kano (Nigeria), we find that potential 
errors in the spatial disaggregation of national emissions cause errors in DACCIWA and 
EDGAR, respectively. Finally, we show that our computationally efficient quantification method 
combined with the daily TROPOMI observations can identify a weekend effect in the road-
transport-dominated CO emissions from Cairo and Algiers. For more details and further 
discussion, we refer to Leguijt et al. (2023). 

4.2.2 Analytical inversion over Europe's iron & steel industry 

We performed analytical inversions with 2019 TROPOMI CO satellite data to determine annual 
carbon monoxide emission rates for 21 European integrated iron & steel plants. These plants 
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are the largest carbon monoxide point sources in Europe. Their reported facility level 
emissions to the E-PRTR are used as prior estimates in our inversions. Per site, the inversion 
uses one of eight simulations with different meteorology for each day to reach optimal spatial 
agreement between observation and simulation. We allow for further freedom in the inversion 
by optimizing the CAMS-based background daily, rather than performing annual scaling. For 
a selected number of plants also a year 2020 estimate was derived (see Leguijt et al., 2025). 

In addition to making use of inversions, TROPOMI CO data can be used to determine emission 
rates using simpler "mass balance" methods like the Cross-Sectional Flux (CSF) method. 
Leguijt et al. (2023) found a lower limit of 100 Gg/year to let the CSF method be able to 
estimate these emissions when applied to synthetic (model simulated) TROPOMI data. Seven 
of the studied plants; Arcelor Dunkerque, Gent, Dubrowie, Port Talbot S Works, Thyssen 
Schwelgern, Huttenwerke Duisburg, and U.S. Steel s.r.o., have reported annual emission 
rates above 100 Gg and therefore merit the application of the CSF. The results are shown in 
Figure 9. The comparison of the results with reported emissions data will be further analyzed 
as part of CORSO Task 1.3, where the intention is to also include the co-emitted NOx 
emissions.    

 

Figure 9: Comparison of year 2019 inversion-based TROPOMI CO emission estimates with estimates 
from the mass-balance cross sectional flux (CSF) method. As the lower limit for the TROPOMI-based 
CSF method was estimated at 100 Gg per year, only the plants with prior or posterior estimates above 
this value are compared. The error bars show the spread in estimated emissions over an ensemble of 
inversions with perturbed configuration parameters such a meteorological data or selection criteria. 

4.3 Examples for NOx emissions 

The CSF and DIV method for quantifying NOx emissions of point sources was applied to the 
strongest 100 point sources in the CORSO point source database, considering only sources 
that are not near other sources. The list includes Belchatow and Jänschwalde power plants 
for which MicroHH simulations are available. Furthermore, we made sure that at least ten 
sources were in Europe and the USA, where bottom-up estimates are expected to be of high 
quality. For Europe, we specially processed 20 iron/steel plants for which also CO emissions 
were estimated. For USA, we processed 12 power plants where daily NOx emission reports 
are available.  
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Figure 10 compares annual emission of bottom-up and top-down methods for 20 point sources 
in Europe (EU27+UK) and USA. Overall, the agreement is very good for sources located in 
countries where bottom-up emissions are known well, providing confidence that satellite-
based NOx emission estimates provide sufficiently accurate estimates for regions where 
bottom-up estimates are less accurate. 

 

Figure 10: Example of annual estimated of NOx emissions of point sources in Europe and USA, 
comparing bottom-up estimates from CORSO point source database (Version 1.0) with top-down 
estimates from the cross-sectional flux and divergence method. The deviations between bottom-up and 
top-down are analyzed and discussed in CORSO Deliverable 1.3. Countries are shown using ISO3 
abbreviations. 

Figure 11 compares time series for two European power plants, Bełchatów and Jänschwalde, 
and one U.S. power plant, Miami Fort, illustrating the impact of NO2-to-NOx conversion factors 
and temporal variability of emissions. 

The Miami Fort time series includes daily bottom-up emission estimates, which reveal high 
emissions during winter and very low emissions from May to October. NOx emissions derived 
from TROPOMI satellite observations show similar seasonal patterns, particularly when 
comparing monthly averages. This suggests that the satellite-based approach is well-suited 
for capturing the temporal variability of NOx emissions. 

A large uncertainty of the top-down NOx emission estimates is related to the correction for NOx 
chemistry, which includes the NO2-to-NOx conversion factor f and the NO2 lifetime 𝜏. The 
timeseries shows the estimates using the machine-learning (ML) model trained with GEOS-
Chem simulation. The annual top-down estimates are shown using three different methods. 
First, default literature values for f (=1.32) and 𝜏 (=4 h) as used outside Europe. Second, the 
values from the ML model as used inside Europe (Schooling et al., 2025). Finally, values from 
plume-resolving chemistry simulations with the MicroHH model are used that are only 
available for selected power plants (Meier et al., 2024; Krol et al., 2024). The top-down 
estimates of annual NOx emissions are similar using the default literature values and the ML 
model, because annual averages of NO2-to-NOx conversion factor and NOx lifetime from the 
model are quite consistent with the literature values. The NO2-to-NOx conversion factors 
derived from MicroHH simulations are higher, slightly increasing the annual estimates. In 
addition, we used a lifetime of 2 h, which is the median found by Meier et al. (2024), when 
applying the CSF method to several cross sections downstream of the power plants, which 
allows for estimating the lifetime. 

This analysis suggests that top-down estimates using the CSF method can underestimate 
NOx emissions by approximately 20-50%. We therefore provide conversion factors and 
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additional parameters with the dataset, enabling users to update NOx chemistry corrections 
when more reliable data are available. 

 

 

 

Figure 11: Example of time series of estimated NOx emissions from cross-sectional flux method 
compared to bottom-up CORSO point source database (Version 1.0). For Belchatow and Jänschwalde 
power plant, top-down estimates are given for the three different methods used for accounting for NOx 
chemistry. For Miami Fort power plant, daily bottom-up estimates are available, showing good 
agreement with top-down estimates. The deviations between bottom-up and top-down are analyzed 
and discussed in CORSO Deliverable 1.3. 

 

5 Future work 

The dataset will be used in Task 1.3 for evaluating the time profiles.  

The dataset has reference DOI 10.5281/zenodo.16838558 
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