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1 Executive Summary 

 

The objective of this work is to build observation operators for the assimilation of radiance 
satellite observations: low frequency microwave brightness temperatures and backscatter 
coefficients, and solar induced fluorescence (SIF). Neural networks are used for the 
microwave observations. For SIF, both neural networks and physically based observational 
operators are considered. Three land surface models are used to provide predictors for 
training the observation operators: ISBA, ECLand and ORCHIDEE (MF, ECMWF and CEA 
respectively). This report is an intermediate document presenting preliminary results. Machine 
learning was used to simulate ASCAT backscatter coefficients and SIF. One of the issues 
concerns the optimal temporal frequency of SIF to properly represent the temporal variations 
of GPP. 1-day and 8-day frequencies were considered in the training of the SIF NN. The latter 
was tested in the offline ECLand model and the former in the ISBA model. The feasibility of 
applying the methodology established for ASCAT to passive microwave data (SMAP, SMOS, 
AMSR-2) still needs to be demonstrated. For SIF, a process-based description of leaf 
fluorescence and its integration at canopy level, taking into account canopy structure, was 
used in the ORCHIDEE model.  
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2 Introduction 

 

2.1 Background 

To enable the European Union (EU) to move towards a low-carbon economy and implement 
its commitments under the Paris Agreement, a binding target was set to cut emissions in the 
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von 
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further 
consolidated with the release of the Commission's European Green Deal on the 11th of 
December 2019, setting the targets for the European environment, economy, and society to 
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and 
societal transformations that are aiming at combining prosperity and sustainability. To support 
EU countries in achieving the targets, the EU and European Commission (EC) recognised the 
need for an objective way to monitor anthropogenic CO2 emissions and their evolution over 
time.  

Such a monitoring capacity will deliver consistent and reliable information to support informed 
policy- and decision-making processes, both at national and European level. To maintain 
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO2 emissions Monitoring and Verification Support (MVS) 
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.  

The CORSO research and innovation project will build on and complement the work of 
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2 
service) projects, both led by ECMWF.  These projects have already started the ramping-up 
of the CO2MVS prototype systems, so it can be implemented within the Copernicus 
Atmosphere Monitoring Service (CAMS) with the aim to be operational by 2026. The CORSO 
project will further support establishing the new CO2MVS addressing specific research & 
development questions. 

The main objectives of CORSO are to deliver further research activities and outcomes with a 
focus on the use of supplementary observations, i.e., of co-emitted species as well as the use 
of auxiliary observations to better separate fossil fuel emissions from the other sources of 
atmospheric CO2. CORSO will deliver improved estimates of emission factors/ratios and their 
uncertainties as well as the capabilities at global and local scale to optimally use observations 
of co-emitted species to better estimate anthropogenic CO2 emissions. CORSO will also 
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value 
of high-temporal resolution 14CO2 and APO observations as tracers for anthropogenic 
emissions in both global and regional scale inversions and develop coupled land-atmosphere 
data assimilation in the global CO2MVS system constraining carbon cycle variables with 
satellite observations of soil moisture, Leaf Area Index (LAI), Solar Induced Fluorescence 
(SIF), and vegetation biomass. Finally, CORSO will provide specific recommendations for the 
topics above for the operational implementation of the CO2MVS within the Copernicus 
programme. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

This deliverable aims to summarise the first results of Task 4.1, which is dedicated to the 
design of forward operators for multi-satellite data assimilation for the analysis of land surface 
variables controlling carbon fluxes. 

A consolidated version of this document (D4.2 - Final review and improvement of land surface 
forward operators for SIF and low frequency MW data) will be issued in December 2024. 
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2.2.2 Work performed in this deliverable 

In this task we acquired and pre-processed SIF observations from Sentinel-5p/TROPOMI and 
low frequency microwave C- and X-band observations from ASCAT, AMSR2 and L-band 
observations from SMAP. SMOS L-band observations will be considered at a later stage. In 
parallel, observation operators for these observations were developed using neural network 
(NN) techniques and tested against physically based forward models using three different land 
surface models (ECLand, ISBA, ORCHIDEE). In this document, preliminary results are 
presented for each model. A comparison between the several approaches will be presented 
in the consolidated version of this document (D4.2).  

 

2.3 Task 4.1 partners 

Partners  

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

ECMWF 

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES 
ALTERNATIVES 

CEA 

METEO-FRANCE MF 
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3 Data 

3.1 Background 

The IFS-based CO2MVS assimilates the same observations as are used for Numerical 
Weather Prediction (NWP), such as SMOS and ASCAT. The aim of this work is to extend the 
use of those observations to constrain additional model variables that are relevant for the land 
carbon fluxes, and to develop the assimilation of existing observations that are not yet used, 
such as Solar Induced Fluorescence (SIF) observations. 

3.2 Solar Induced Fluorescence (SIF) observations from Sentinel-
5p/TROPOMI 

The ESA TROPOSIF product is derived from Sentinel 5-P TROPOMI observations 
(https://s5p-troposif.noveltis.fr/data-access/) in the 743-758 nm near-infrared window 
(Guanter et al., 2021). The associated retrieval error is typically 0.5 W·m-2·sr-1·m-2·μm-1, 
raising a relative uncertainty on the order of 30%. Daily estimates are used (SIF_Corr_743). 
They are based on a time and day-length correction factor following Frankenberg et al. (2011).  

3.3 C-band microwave observations from ASCAT 

The ASCAT data consist of C-band radar backscatters (sigma0). The ASCAT sigma0 at an 
incidence angle of 40 degrees is available from the EUMETSAT HSAF service. Digital Object 
Identifier (DOI) is: https://doi.org/10.15770/EUM_SAF_H_0009  

3.4 C-band and X-band microwave observations from AMSR2 

The AMSR2 data consist of C-band and X-band brightness temperatures (TB). Data at higher 
microwave frequencies are also available but they are less sensitive to land surface variables. 
DOI for original L1B-TB GCOM-W/AMSR2 L1B JAXA data is: 

https://doi.org/10.57746/EO.01gs73ans548qghaknzdjyxd2h  

 

3.5 L-band microwave observations from SMAP 

The SMAP data consist of L-band brightness temperatures (TB). The original L1C data can 
be accessed from https://nsidc.org/data/spl1ctb/versions/5. 

 

  

https://s5p-troposif.noveltis.fr/data-access/
https://doi.org/10.15770/EUM_SAF_H_0009
https://doi.org/10.57746/EO.01gs73ans548qghaknzdjyxd2h
https://nsidc.org/data/spl1ctb/versions/5


CORSO  
 

D4.1  8 

4 Methods 

4.1 ORCHIDEE modelling framework 

CEA worked on assessing the potential of space-borne SIF data to improve the space-time 
distribution of GPP simulated by the ORCHIDEE (Organizing Carbon and Hydrology In 
Dynamic Ecosystems) land surface model. The main parameters of ORCHIDEE related to 
photosynthesis and phenology were calibrated using a co-assimilation of space-borne 
estimates of SIF from Sentinel-5p observations and in situ Gross Primary Productivity (GPP) 
data. The observation operator for SIF followed a process-based description of the leaf 
fluorescence and its integration at canopy level accounting for the canopy structure (see initial 
description in Bacour et al. 2019).  The optimized parameters were then applied to perform a 
simulation of GPP at a global scale, which were compared to those obtained with the standard 
parameter values and to a reference GPP product (FLUXSAT, Joiner et al. 2018). The 
differences between the prior and optimized simulations, and with the FLUXSAT data, 
highlight the combined constraint brought by GPP and SIF data to improve the model 
prediction.  

4.1.1 Land surface model 

ORCHIDEE is a mechanistic land surface model (LSM) designed to simulate the fluxes of 
carbon, water, and energy between the biosphere and atmosphere (Krinner et al., 2005). It is 
a component of the Earth System Model developed by Institut Pierre-Simon Laplace IPSL-
CM. The model operates from local to global scale, representing the spatial distribution of 
vegetation using fractions of plant functional types (PFTs) for each grid cell. Currently 14 PFTs 
are used: https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php. Recent developments were 
made for this study with both photosynthesis and fluorescence modules that now account for 
the partition between sun and shaded leaves within the canopy (Zhang et al. 2020). The 
fluorescence module, now following a 2-flux radiative transfer scheme, differs from that 
described in Bacour et al. (2019), which was based on a parametric emulator of the SCOPE 
model (van der Tol et al., 2009).  

4.1.2 Data assimilation approach 

We employed the ORCHIDAS Data Assimilation tool (https://orchidas.lsce.ipsl.fr/) (MacBean 
et al., 2022; Bacour et al., 2023). The assimilation relies on a Bayesian framework with a 
global misfit function between model simulations and observational data, considering error 
covariance matrices and prior information. We used a Genetic Algorithm (Goldberg, 1989), to 
iteratively minimize the misfit function (Bastrikov et al., 2018).  

The assimilations were conducted on a PFT-basis, against GPP data (site scale estimates or 
FLUXSAT data for three PFTs for which no in situ data are available) and TROPOMI SIF 
retrievals for a collection of selected sites and grid cells. The co-assimilation of these two 
variables helps prevent parameter overfitting. Two assimilation experiments are conducted 
depending on the cloud fraction threshold to select the SIF observations (see below). 

We used the daily averaged SIF retrievals of the TROPOSIF product (Guanter et al., 2021), 
over the period 2018-2020. Only observations passing the quality flag and associated with 
view zenith angles below 40° and two cloud fraction thresholds (below 0.2 and 0.5) were 
considered. The data were binned at 8-day/0.25° resolution. We selected fifteen grid cells for 
each of the 14 vegetation PFTs, with the highest thematic homogeneity and ensuring a correct 
sampling of the global distribution. For most PFTs, we assimilated daily in situ GPP estimates 
from FLUXNET (Baldocchi et al., 2001; Pastorello et al., 2020), while we used FLUXSAT-GPP 
(Joiner et al., 2018) data for three PFTs (TrDBF, BoDNF, TrC3GRA) without in situ GPP 
estimates. The diagonal of the error covariance matrix on observations is populated by the 
root mean square difference (RMSD) between observations and model simulations using prior 
standard parameter values (MacBean et al., 2022; Bacour et al., 2023). We then balanced the 
misfit functions associated respectively to SIF and GPP at the first iteration to account for the 

https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php
https://orchidas.lsce.ipsl.fr/
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larger number of GPP observations. We optimized parameters related to photosynthesis, 
phenology, SIF and hydrology. 

4.1.3 Justification of the use of weekly means for SIF 

We used TROPOSIF weekly means in order to decrease the relatively high random error 
associated to individual retrievals, and to smooth directional effects, which are usually not 
modelled in land surface models. Using instantaneous values would also have meant 
managing the time of the acquisition in the model to get the correct corresponding time step 
for GPP. Regarding data assimilation in the ORCHIDEE land surface model, the minimization 
algorithms used to optimize model parameter values usually compute squared differences 
between model and observations, and they would be very sensitive to instantaneous large 
errors. This would require specifying variable observation/model errors (R matrix) with larger 
errors for “outliers”, which is still a difficult task. The linearity of the relationship between SIF 
and GPP usually breaks down at high spatial/high temporal resolution. Incorrect 
parameterizations of their respective temporal dynamics in the model may introduce some 
estimation bias if instantaneous data are assimilated. In addition, accounting for instantaneous 
data is associated with higher computational burdens (increased frequency of inputs/outputs, 
memory, etc.) which may become limiting when considering observations over many pixels. 
This is another incentive to work with weekly means. 

4.2 ISBA modelling framework 

MF worked on SIF, ASCAT and SMAP. At this stage, tests were made over southwest France 
and over the European CAMS domain, before going global in a next stage. 

ASCAT data are assimilated in the ISBA land surface model using MF’s global Land Data 
Assimilation System (LDAS-Monde) tool. Observation operators based on neural networks 
(NNs) are trained with ISBA simulations and LAI observations from the PROBA-V satellite to 
predict the ASCAT backscatter signal. The locally trained NN-based observation operators 
(one per grid cell) are implemented in LDAS-Monde, which allows the sequential assimilation 
of backscatter observations (Corchia et al. 2023).  

As far as SIF is concerned, before working at a global scale, MF re-gridded the daily 
TROPOSIF product over the CAMS European domain on a regular grid at a spatial resolution 
of 0.1 x 0.1°. First tests were made to simulate the daily SIF product using a machine-learning 
method similar to the one used for ASCAT. 

4.2.1 Land surface model 

The version of the model that is used for this study is capable of representing soil moisture, 
soil temperature, photosynthesis, plant growth and senescence. Phenology is driven entirely 
by photosynthesis, using a simple allocation scheme. Net leaf CO2 assimilation is used to 
represent the incoming carbon flux for leaf biomass growth. A photosynthesis-dependent leaf 
mortality rate is calculated. The balance between the leaf carbon uptake and the leaf mortality 
rate results in an increase or a decrease in leaf biomass. Leaf biomass is converted to LAI 
using a fixed value of specific leaf area (SLA) per plant functional type.  

4.2.2 Observation operators 

The simulated LAI is flexible and LAI observations can easily be used to correct the simulated 
LAI using a simple Kalman filter in the LDAS-Monde sequential data assimilation framework. 
Variables simulated by the model, such as soil moisture and soil temperature, can be used to 
train neural networks (NNs) able to simulate satellite observations such as radiances, 
brightness temperatures (TB) and radar backscatter coefficients (sigma0). Since the simulated 
LAI may be affected by strong biases due to the lack of representation of anthropogenic 
processes (e.g. crop rotation), satellite LAI observations are used during the NN training phase 
rather than modelled LAI. NN observation operators for radiances, TB and sigma0, need to 
be constructed before implementing the sequential assimilation of these quantities. Checking 
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the ability of the sequential assimilation to improve the simulation of the observations is one 
way of ensuring that major model biases are not introduced into the observation operator. 

 

4.3 ECLand modelling framework 

The work of ECMWF was dedicated to the design of machine learning-based observation 
operators to assimilate passive multi-frequency microwave data (AMSR-2), active microwave 
data (ASCAT backscatter) and SIF in the IFS.  

4.3.1 Design of a new training database for land processes 

While existing training databases were used for ASCAT and AMSR-2, a new training database 
for land surface processes was developed for the CORSO project. The model fields were 
derived from 13 years of ECLand offline simulations (2010-2022) at a resolution of 25km and 
1-h time step, using ERA-5 climate forcing. The observations include SIF (Caltech and 
Troposif), GPP (fluxcom and VODCA2GPP) and LAI (CGLS) satellite-based variables. 
Integration of microwave observations is in progress and will be completed in the next months. 
Zarr and Dask technologies are exploited to ensure efficient data access and archiving of the 
data. The training database relies on accurate collocation between the model fields and the 
satellite observations in the observation space. The designed framework is generic and 
reproducible to facilitate the update of the training database with new model or observation 
versions. This new database will be used to design the SIF and the microwave level-1 forward 
operators.  

4.3.2 AMSR-2 information content analysis 

An existing AMSR-2 training database at ECMWF (credit: Alan Geer, ECMWF), which is 
shared with the CERISE project, was produced using the IFS Cycle 47r1 and the all-sky 
observation framework of IFS cycle 47r3, using a N256 reduced Gaussian grid, over a 15-
month period (2020/07/01-2021/09/30). The database includes the brightness temperatures 
from the 14 AMSR-2 channels in both vertical and horizontal polarizations. The training 
database has been modified for its use in CORSO with the introduction of vegetation and 
carbon flux variables, soil and vegetation types. A preliminary work has focused on the 
evaluation of the correlations between the brightness temperatures in C, X, Ku and ka bands 
and the IFS model fields (vegetation parameters, soil moisture, soil temperature, albedo 
among others). 

4.3.3 ASCAT  

A four-year training database (credit: Aires et al., 2021), which relates ASCAT backscatter at 

40 to ERA-5 model variables (LAI, soil moisture and soil temperature in first 3 layers, soil type 
and vegetation type), was used. Several architectures of feedforward neural network (NN) and 
gradient boosted trees (xgboost package) were tested to simulate ASCAT backscatter 

normalized at 40 at global scale from the IFS model fields. ML models were developed in the 
observation space, at global scale, with the use of latitude and longitude as additional features 
to represent local observation conditions. The NN model was developed using the PYTORCH 
ML package. The current work is dedicated to the implementation of the NN in the IFS which 
requires code adjustments to assimilate level-1 backscatter ASCAT data in place of soil 
moisture retrieval. 

4.3.4 SIF  

Two global datasets derived from TROPOMI  observations in the 735-758 nm window were 
acquired and pre-processed. The ungridded Caltech dataset (Koehler et al., 2018) was 

regridded at 0.1 at 8-day and 1-day temporal frequencies. The gridded Troposif dataset 

(Guanter  et a.l, 2021) was produced at 0.1  spatial resolution and 8-day temporal frequency 
by the LSCE. The pre-processing of both datasets include daily correction factor to obtain 
daily estimate of SIF along with cloud and unfavourable geometries (view and solar zenith 
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angle) filtering. These SIF datasets were compared with GPP (fluxcom: Jung et al., 2021; 
VODCA2GPP: Wild et al., 2022) and LAI (CGLS dataset) satellite-based observations. The 
evaluations were conducted at continental scale (latitude transects) and site scale to 
understand (1) how SIF correlates with GPP and LAI observations and (2) identify possible 
discrepancies between the Caltech and Troposif SIF datasets.  

 

 

5 Results 

5.1 ORCHIDEE modelling framework 

Figure 1 below illustrates the improvement of the model prediction after the assimilation of 
both GPP and SIF data.  

 

Figure 1: Comparison of the RMSD between data and model simulations before (blue) 
and after (green) assimilation, for SIF (left) and GPP (right), over ORCHIDEE’s PFTs. 

The assimilations considered here are conducted on SIF data selected using a 
threshold of 0.5 on cloud fraction. 

The improvement is revealed by comparing the prior and posterior RMSDs for GPP and SIF 
respectively, calculated over all pixels considered for each PFT optimization, with a cloud 
fraction threshold of 0.5. Except for grasses and crops, the prior GPPs simulated by 
ORCHIDEE agree well with the in situ data, with a RMSD typically lower than 3 gC m-2 d-1. 
Grasses and crops show a larger inter-sites/grid-cells variability and a higher model-data 
mismatch. A model improvement with respect to GPP following the assimilation is observed 
for all PFTs. The prior SIF simulations largely overestimate the TROPOMI SIF data. The 
RMSD is generally largely decreased after the assimilation, except for TeDBF and BoDBF. 
Except for a few PFTs (TeDBF and BoDBF mainly), the threshold on cloud fraction (CF=0.2 
and 0.5) used to select the SIF data that are assimilated (binned at 0.25°/8-day resolutions) 
has a marginal impact on the model improvement (not shown).  

The optimized values of the model parameters were then used for a global scale simulation 
with ORCHIDEE (ORCHIDEE-opt for CF=0.2, and ORCHIDEE-opt2 for CF=0.5). The global 
scale simulations were performed at 0.5°/monthly resolutions, based on the CRUJRA 
meteorological forcing data (Harris et al., 2020; Kobayashi et al., 2015).  

Figure 2 shows the yearly GPP maps over the period 2018-2020 for ORCHIDEE simulations, 
prior and posterior to the data assimilation, as well as for the FLUXSAT reference product.  
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Figure 2: Yearly mean map over the period 2018 (from May) – 2020, for the simulations 
performed with the ORCHIDEE land surface model prior and posterior (“opt” for assimilations 

conducted on SIF data selected using a threshold of 0.2 on cloud fraction; “opt2” for a 
threshold of 0.5 on CF) to data assimilation, and the FLUXSAT reference product. The global 
minimum, maximum, and mean values are provided (gC m-2 d-1), as well as the global budget 

(in PgC m-2 yr-1). 

The simulations performed with the prior parameter values resulted in a mean global GPP 
budget of 178 GtC yr-1, which falls within the upper range of typical GPP estimates. This is a 
feature specific to this new 2-flux version of ORCHIDEE (which distinguishes between direct 
vs diffuse light) for which the model parameters were not initially calibrated. The co-
assimilation of SIF and GPP data decreased the global budget by about 35 GtC yr-1, resulting 
in a closer agreement with that of FLUXSAT (149 GtC yr-1). The spatial distribution of the 
optimized GPP over the tropics is closer to that of FLUXSAT than the prior distribution. This 
can be partly explained by the fact that the constraint on the optimized model parameters 
relied on FLUXSAT estimates for the TrDBF (tropical deciduous broadleaf forest) PFT 
because no in situ data were available. However, in ORCHIDEE, this PFT is mostly dominant 
in the Northern and Southern parts of the African tropical forest, as well as in Northern 
Australia, and not over the Amazon basin (mostly tropical evergreen broadleaf forests). For 
the temperate and high latitude regions, we also a convergence between ORCHIDEE and 
FLUXSAT after the assimilation. The improved agreement in ORCHIDEE simulations against 
reference GPP data (FLUXSAT as well as GOSIF (Li and Xiao (2019), and LSM simulations 
performed in the context of the TRENDY v11 exercise (https://sites.exeter.ac.uk/trendy)) ), 
achieved through data assimilation, can also be evaluated in Figure 3 with respect to the 
averaged time series at global scale.  
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Figure 3: Comparison of the average GPP time series for the ORCHIDEE simulations prior and 
posterior to data assimilation (“opt2” using a threshold of 0.5 on CF), and against the mean 

TRENDY simulations (black, standard deviation is shown in grey), FLUXSAT and GOSIF data. 
The comparison are shown for the global scale (left) and over the tropics - between 30°N and 

30°S  (right) accounting only for the common pixels. 

The global seasonal amplitude of the GPP, too large in the prior, is close to the one of 
FLUXSAT and GOSIF products after optimization. However, discrepancies are observed in 
different regions / biomes, as highlighted here over the tropics (30°N to 30°S), where the 
limited availability of instrumented sites increases the uncertainty in FLUXSAT and GOSIF 
GPP estimates. In this tropical regions, ORCHIDEE posterior estimates has a much lower 
seasonal amplitude than FLUXSAT AND GOSIF.  

 

5.2 ISBA modelling framework 

5.2.1 Observation operator for ASCAT sigma0 

Figure 4 shows the statistical and spatial distributions of the RMSD of the simulated ASCAT 
sigma0 over southwestern France after training the NNs (one per grid cell).  

 

Figure 4: Predicted ASCAT sigma0 RMSD over southwestern France: (left) box plots for 12 NN 
configurations for the 2007–2014 training period for one-layer and two-layer NN 

configurations, (right) map for 1-layer, 40-neuron local NNs using ISBA surface soil moisture 
and soil temperature simulations as input together with PROBA-V LAI observations, for the 

2015–2018 test period. Adapted from Corchia et al. 2023. 

This figure shows that a single layer consisting of 40 neurons is sufficient to achieve a median 
RMSD value comparable to the observation error of ASCAT (0.33 dB). Further increasing the 
number of neurons only slightly decreases the RMSD, while adding hidden layers does not 
improve the sigma0 predictions. Consequently, a single layer with 40 neurons is determined 
to be the optimal choice. The RMSD of the simulated sigma0 is often in the range of 0.3 to 0.4 
dB (for about 45% of the grid cells). This is in agreement with the mean ASCAT observational 
error of 0.33 dB. 
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5.2.2 Observation operator for SMAP 

Figure 5 shows the statistical distribution of simulated and observed H-pol SMAP TBs over 
Europe, from May 2018 to January 2020.  

 

Figure 5: Statistical distribution of predicted and observed SMAP TB at H polarization over 
Europe, from May 2018 to January 2020. The predicted TB is produced by a global 3-layer NN 
including 193 neurons, using ISBA surface soil moisture and soil temperature simulations as 

input. 

In this case a single NN is used for all 0.1° x 0.1° grid-cells over Europe and the ISBA surface 
soil moisture and surface soil temperature simulations are used as predictors to train the NN. 

5.2.3 Observation operator for SIF 

Figure 6 shows the statistical distribution of simulated and observed SIF (daily TROPOSIF 
product) over Europe, from June 2019 to May 2020, using a single NN for all 0.1° x 0.1° grid-
cells over Europe.  

 

Figure 6: Statistical distribution of predicted and observed SIF (daily TROPOSIF product) over 
Europe, from 1 June 2019 to 31 May 2020. The predicted SIF is produced by a global 3-layer NN 

including 193 neurons, using latitude, altitude, plant functional type, ISBA surface soil 
moisture, soil temperature, GPP, and PROBA-V LAI observations as input. 

At this stage of the study, the NN is not able to represent the largest SIF values but the SIF 
predictions correlate well (r = 0.78) with the observations. 
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5.3 ECLand modelling framework 

5.3.1 AMSR-2 information content analysis 

Figure 7 shows the correlations between each model field with the polarization index (PI) in 
selected AMSR-2 channels. 

 

Figure 7: Correlation map of IFS model fields (vegetation, albedo, snow, soil temperature, soil 
moisture) with polarization index in selected AMSR-2 bands. 

 

PI is the ratio of the difference and the sum of the brightness temperature in vertical (V) and 

horizontal (H) polarization (𝑃𝐼 =
𝑉−𝐻

𝑉+𝐻
). The correlations are negative with vegetation variables, 

positive with snow, negative with soil temperature and negative with soil moisture. The 
relationships between the model fields and the AMSR-2 brightness temperature of the PI do 
not show strong dependency with microwave frequency.  

5.3.2 ASCAT machine-learning based forward operator 

The comparison of ensemble trees xgboost method and feedforward NN showed that a NN 
with 4 hidden layers, 60 neurons provides the most accurate predictions of ASCAT backscatter 
at global scale. Figure 8 shows that the spatial distribution of backscatter and its pattern as a 
function of soil moisture and LAI are accurately reproduced by the NN.  

 

Figure 8: Evaluation of the ASCAT feedforward neural network for year 2019. a): Observation 
versus NN prediction scatterplot; b): Global maps of observed and predicted backscatter; c) 

Comparison of predicted and observed backscatter patterns as a function of modelled LAI and 
surface soil moisture. 

a) b) 

c) 
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The MAE obtained at global scale is within the expected error of the backscatter at 40 
product. 

5.3.3 SIF data analysis 

Both Caltech and Troposif datasets show very consistent spatial (Figure 9) and temporal 
(Figure 10) distribution.  
 

 
Figure 9: Latitude transects of seasonal mean (summer and winter) of Caltech and Troposif 

SIF, CGLS LAI and fluxcom and VODCA2GPP GPP satellite-based observations. 

 
The temporal evolutions of both SIF datasets and satellite LAI (CGLS) are very consistent 
particularly over cropland (Figure 10).  
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Figure 10: Temporal evolutions of Caltech and Troposif SIF, CGLS LAI and fluxcom and 

VODCA2GPP GPP satellite-based observations at the site level. 
 

The shift in vegetation peak between LAI and SIF observed at the North latitude forest site is 
likely related to differences in temporal sampling between the satellite products at high latitude 
due to differences in geometry or/and cloud contamination. While SIF theoretically relates to 
photosynthetic activity at the leaf level the SIF signal retrieved from satellite can be strongly 
influenced by canopy architecture and thus LAI. This explains the large correlation observed 
between the SIF and LAI datasets. The more erratic evolutions of SIF and LAI observed over 
the tropical savanna site can be due to residual cloud screening. Both Tropomi and Caltech 
SIFdatasets show higher spatial and temporal correlations with fluxcom GPP than 
VOD2CAGPP GPP. This latter shows higher values and more erratic temporal and spatial 
distributions than fluxcom GPP. Besides, it exhibits spurious temporal evolutions over the 
cropland site. This illustrates the large uncertainties that are associated with GPP datasets. 
However, the good correlation between SIF and fluxcom GPP reinforces the idea of using SIF 
to analyse GPP in land data assimilation system. The next step will consist in evaluating the 
relationship between SIF and the model GPP. 
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6 Conclusion 

This report presents preliminary results from the development of observation operators for 
novel satellite observations. 

In ECLand and ISBA, machine learning was used to simulate ASCAT sigma0 and SIF.  

The next steps for the ECLand ASCAT forward operator will be its implementation in IFS to 
analyse soil moisture and LAI simultaneously. The impact on carbon, water fluxes and NWP 
results will be evaluated.  

For SIF, the new land surface processes database will be used to test different NN 
architectures. One of the issues concerns the optimal temporal frequency of SIF to properly 
represent the temporal variations of GPP.  

The next stage will include the following tests:  

(1) 1-day and 8-day frequencies in the training of the SIF NN, the latter being first tested in the 
offline ECLand model and then implemented in the IFS,  

(2) the possibility of updating GPP and/or LAI.  

Finally, the methodology established for ASCAT will be applied to other passive microwave 
satellites (SMAP, SMOS, AMSR-2) using the new land surface process training database.  

Prior to the global deployment in ISBA, initial NN training tests were carried out over south-
west France and Europe for ASCAT sigma0, SMAP TBs and SIF. The next step will be to 
extend the training to a global scale for these data and to evaluate the observation operators 
in a data assimilation context. Other data sources such as AMSR2 and SMOS will be 
considered.  

In ORCHIDEE a process-based description of leaf fluorescence was used as an observation 
operator for SIF. It is able to represent fluorescence integration at canopy level, taking into 
account canopy structure. The integration of this information into the ORCHIDEE model has 
to be done together with the integration of in situ GPP observations in order to efficiently 
optimise the model parameter values.  

The different technological choices made between the three modelling frameworks (physical 
approach in ORCHIDEE, empirical in ECLand and ISBA) will be evaluated in a next step. 
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